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Unitary dilations of Hilbert space operators and related topics by B. Sz.-Nagy, 
CBMS No. 19. Amer. Math. Soc, Providence, R. I., 1974. 

In 1972 V. I. Lomonosov discovered a technique which settled the 
longstanding problem of whether or not two commutative compact 
operators have a common invariant subspace. He actually proved more: If A 
is a compact operator, then A shares a common invariant subspace with 
every operator that commutes with it. In fact as he asserted, a slight 
modification of his proof shows that the conclusion holds if A merely 
commutes with a compact operator. His technique, which utilizes the 
Schauder fixed point theorem, was immediately seized upon by many people 
and used to produce even stronger invariant subspace theorems. The paper 
A survey of the Lomonosov technique in the theory of invariant subspaces, by 
C. Pearcy and Allen L. Shields takes us through Lomonosov's contribution 
to some of its consequences and also discusses the current interesting state 
of the invariant subspace problem. A goodly portion of this material has also 
appeared in the monograph Invariant subspaces of H. Radjavi and P. 
Rosenthal, Springer-Verlag, Berlin, 1973. 

There is much of interest in this book. The writing is generally brisk and 
meets a high standard for mathematical exposition. These essays can contri
bute a great deal to showing students some of the areas of operator theory 
that have been and are still the subject of considerable research. 

ERIC A. NORDGREN 

BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 82, Number 3, May 1976 

Model theory, by C. C. Chang and H. J. Keisler, Studies in Logic and the 
Foundations of Mathematics, Vol. 73, North-Holland, Amsterdam, 1973, 
xii+550pp., $26.50. 

1. General remarks.1 This, in many ways remarkable, book is the first 
attempt at a systematic exposition of a young discipline, model theory, 
written by two of the main contributors to the subject. Naturally, the 
reviewer felt tempted to seize the opportunity to give a general discussion of 
the subject itself but unfortunately most of his general remarks had to be 
eliminated to bring the review down to a size acceptable to the Editors. To 
appreciate another difficulty of writing this review, consider one of the most 
striking features of the book, and in fact of model theory itself, namely the 
immense variety of topics, methods and orientation. One could hardly find 
two subjects further apart than, e.g. Artin's conjecture on p-adic number fields 
on the one hand, and the theory of measurable cardinals on the other, both 
given full expositions in the book. And these are just two examples of the 
large number of similarly disparate (at least, apparently disparate) matters in 

1 The reviewer would like to express his thanks to Stephen Garland, Victor Harnik, Jan 
Mycielski, Gonzalo Reyes, H. Jerome Keisler and Allan Swett for their helpful criticism of the 
original version of this review. 
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the book. Hence, any reasonably complete description of the contents alone 
has already to be quite long. 

And now we have to say that the book does not contain enough! 
Naturally, it is impossible to blame the authors for this. Rather, one has to 
"blame" the explosion in model theory that has taken place especially 
during the last few years. This has produced not only many new results but 
also it has changed our general outlook considerably. The book does not 
quite, and in fact, cannot possibly, do justice to the emergence of these new 
aspects. 

The authors employ an apparently natural principle to limit their material; 
namely, they consider only the model theory of (unitary) first order logic. 
Actually, this limitation no longer seems natural, as surely many teachers of 
model theory realize today. (We think here of generalized quantifiers and 
infinitary logic in particular.) But even the model theory of first order logic 
in the strict sense has important aspects that cannot be much more than 
guessed at on the basis of the book. Perhaps a slight blame is due to the 
authors who write in the preface that " . . . this book covers most of first-
order model theory". There are qualifications in the next few paragraphs of 
the preface but they are not quite adequate. 

A good reason for the particular choices the authors have made for their 
material is the existence of books in the literature dealing with subjects 
omitted from the present book. Keisler's Model theory for infinitary logic, 
North Holland, 1971, is in fact quite close in spirit and notation to the 
present book and (as Keisler has said to the reviewer) should be regarded as 
a continuation of the present book. Later we will mention other books as 
well that supplement the present one in various ways. 

In summary, let us then warn the reader that he should not expect an 
exposition of an elegant uniform single theory but rather the spectacle of 
several basic methods developed and applied, sometimes in combinations, 
into widely divergent directions. And let us add that there is much more to 
practically each of those directions than could possibly be dealt with in the 
book, but which is indispensable material for those wishing to do research in 
the respective area. On the other hand, let us also state that it is at least 
difficult to argue with the judgment of the authors as to what are the 
fundamental facets that have to be put into a global introduction to model 
theory. If we add that the authors have done a truly admirable, meticulously 
careful job in planning the structure and in the actual writing of their work, 
the reader should have a first general impression of the book. 

First order logic is perhaps the central construction of all of mathematical 
logic. Model theory in particular, at least as presented in this book, and as 
initially conceived, is simply a general theory of first order logic. However, it 
is interesting to note that first order logic appears in a quite different light to 
the "metamathematician" working on the foundations of mathematics than 
to the model theorist. In foundations, one is interested only in a few special 
"foundational" structures, such as Cantor's universe of sets, the structure of 
natural numbers, etc., and one perceives first order logic as a practically 
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universal language in which "everything" one is interested in can be 
expressed. 

On the other hand, the modeltheorist is interested in all models (more 
precisely, in the class of all models) of a theory and it turns out that this 
point of view leads him to view first order logic as having little expressive 
power. E.g., a characteristic model theoretical theorem, the Löwenheim-
Skolem theorem implies that there is no way to make a model uncountable 
by imposing first order axioms on it. Thus, systematic model theory at its 
beginnings (around 1950) did not promise to be a logical continuation of the 
earlier development of mathematical logic. Also, in sharp contrast to other 
parts of mathematical logic, and to some other parts of mathematics as well, 
model theory did not start out with the aim of solving philosophically or 
otherwise intriguing specific problems. Rather, model theory for its exis
tence depended on some basic phenomena discovered earlier plus an 
essential amount of enthusiastic philosophical faith in the intrinsic interest 
and in the potential usefulness of a general study of the semantics of first 
order logic. Alfred Tarski is the one who undoubtedly is responsible, both 
by his work and by his direct influence on his students (who are key figures 
of model theory today), for the emergence of model theory as we see it 
today. A particularly important feature that is connected to Tarski's in
fluence is the decisive set-theoretical orientation of model theory. 

To start with, model theory inherited two fundamental results which 
should in our view both be considered to belong to model theory proper but 
which had been obtained at times when systematic model theory did not 
exist yet. One is the Löwenheim-Skolem theorem, the other is Gödel's 
completeness theorem. The first is a 'purely semantical' one in the sense that 
it makes reference to the fundamental semantical notion of truth of a 
sentence in a model, it also involves a structural property of models, namely, 
the cardinality of the underlying set, but it makes no reference to the 
syntactical structure of formulas. Now, the adjective 'model theoretical' is 
sometimes used synonymously with 'semantical' and the use signifies the 
absence of reference to syntax. From this point of view, the Löwenheim-
Skolem theorem belongs to model theory, but the completeness theorem 
does not. Though we do not agree with this point of view, it is easy to see 
why it has evolved. Mathematical logic as it became defined in its first era of 
maturity before around 1950 was primarily concerned with formalized proof 
procedures and it had a general tendency, and sometimes the explicit goal, 
of eliminating semantical considerations from the investigation of syntactical 
structure. For the emancipation of model theory it was important to em
phasize the relative independence of the semantical aspect in view of the 
fact that other parts of mathematical logic had claimed self-sufficiency of the 
syntactical aspect. But it seems to this reviewer that today model theory is 
better defined as the investigation of the interplay of semantics and syntax 
than as a study of semantics alone. In this view, Gödel's completeness 
theorem is the most typical result of all of model theory. This position 
should be seen partly as a result of recent shifts of emphasis and interests in 
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model theory. E.g., Keisler (Ann. Math. Logic, 1970) has proved a com
pleteness theorem for the logic with the quantifier "there are uncountably 
many" that has the same form as Gödel's completeness theorem. It seems 
hardly possible to exclude this result from model theory proper (of a logic 
extending first order logic, of course), e.g., in view of the advanced use of 
the typical methods of model theory in the proof. As another example, in 
so-called infinitary first order logics on admissible sets syntactic notions that 
are generalizations of 'recursive' and 'recursively enumerable' are indispens
able for formulating the results. 

It is quite fortunate that the completeness theorem is treated fully in the 
present book despite the fact that it might have been tempting to take a 
shortcut to its 'purely semantical' consequence, the compactness theorem 
since completeness as it is not used (except once in Chapter 6) again in the book. 
Nevertheless, in the book there are traces of the view excluding syntax from 
model theory. E.g., questions of decidability (most typically a syntactical notion) 
are not considered to belong to model theory (p. 49). Actually, the classical 
proofs of wndecidability have nothing to do with semantics, and so, with model 
theory either. But model theory provides excellent examples of proofs of 
decidability of theories and such decidability proofs have played an important 
role in model theory. E.g., A. Robinson's theory of model completeness was 
developed for giving a model-theoretical approach to the completeness and 
decidability of 'specific' theories such as that of algebraically closed fields or real 
closed fields. Incidentally, in those proofs the abstract completeness theorem, a 
not purely semantical consequence of the original formulation: the set of 
logically valid sentences is recursively enumerable, plays an important role. 

As a matter of fact, model theory is full of results that are at least partly 
syntactical and the book gives an ample sampling of them. 

To return to the origins of model theory, the Löwenheim-Skolem theorem 
and the compactness theorem stand out clearly as the foundations. Much 
later it turned out that, by a fundamental result of Lindström (Theoria 35 
(1969), 1-11), first order logic is "characterized" by these two theorems, a 
fact that is almost ironic in its fittingness. 

To give a very rough classification of model theory, we note that, in 
retrospect, model theory seems to have had two main lines of inquiry, the 
first of which we would like to call generalized algebra, the other descriptive 
formal logic. Very roughly speaking, the emphasis in generalized algebra is 
on models as opposed to formulas, whereas in descriptive logic, the situation 
is the reverse. Of course, no claim is being made about the possibility of a 
rigid division, but we nevertheless feel that the distinction is quite real. The 
word "algebra" in the first phrase refers to "modern algebra" conceived as a 
"theory of structure" and not the earlier meaning of the "formal aspect of 
mathematics" that (confusingly) would have more to do with the second 
subdivision! 

2. The plan of the book. The book has seven chapters. The first five 
(with the possible exception of parts of §§5.4 and 5.5) form the basic part of 
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the material, the rest being a glimpse into advanced model theory. After the 
introductory Chapter 1, the basic part is organized around the following 
methods of model constructions: 

1. Models constructed from constants (Chapter 2). 2. Elementary substruc
tures and elementary chains (§§3.1 and 3.2). 3. Skolem functions and 
indiscernibles (§3.3). 4. Ultraproducts (Chapter 4). 5. Saturated and special 
models (Chapter 5). 

3. The first two groups of constructions. The first fundamental theorem 
is the Compactness Theorem, Theorem 1.3.22, saying that a set of sentences 
2 has a model iff every finite subset of 2 does. It is derived as a consequence 
of the Gödel completeness theorem that, in turn, is proved by Henkin's 
1949 method. Henkin's method constructs the desired model M such that 
the underlying set (domain) of M is essentially a set of individual constants 
(formal symbols capable of denoting individual elements of models), hence 
the title of Chapter 2. Actually, Henkin's method as well as a related 
method, the method of diagrams (p. 68) can be more appropriately de
scribed by saying that the model is constructed from formulas; in the case of 
Henkin's method, a full 'description' of a model is constructed in the form of 
a set of sentences. The compactness theorem is the most frequently used 
theorem of model theory. 

The second fundamental result is the (extended) Omitting Types Theorem 
(Theorem 2.2.15) that we decline to state here. It is an extremely useful 
result, despite the fact that it concerns countable models only. 

The notion of elementary extension was introduced by Tarski and Vaught. 
An extension JB of A is an elementary extension of A if every finite 
sequence of elements in A satisfies the same formulas in B as in A. The 
third basic result is the downward Löwenheim-Skolem-Tarski theorem that 
in a special case says that any infinite structure of a countable language has a 
countable elementary substructure. By an application of the Compactness 
Theorem, this can be extended to the full Löwenheim-Skolem-Tarski 
theorem (Theorems 3.1.5 and 3.1.6 together). The fourth fundamental 
result is Theorem 3.1.13, the Tarski-Vaught elementary chain theorem: the 
union of a directed system of structures in which every "smaller" one is an 
elementary substructure of a "greater" one is an elementary extension of 
each structure in the family. 

Let us look at some applications of the fundamental results listed so far. 
There are, first of all, some rather direct applications to special situations, 
such as the existence of "nonstandard" models of various theories. A first 
coherent group of model theoretical results constitutes a descriptive theory 
of countable models of countable complete theories (and is most typically a 
part of "generalized algebra" as we understand this term) (§§2.3 and parts 
of 3.2). The special kinds of countable models that are isolated in the 
discussion are the prime, countably saturated, countably universal, and 
countably homogeneous models. The most striking results are Ryll-
Nardzewski's characterization of Ko-categorical theories and Vaught's 
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theorem that a complete countable theory cannot have exactly two 
nonisomorphic countable models (but can have exactly 1, 3, 4, etc.). 

Under a second heading fall the two-cardinal theorems. The two-cardinal 
theorem of Vaught says that if a countable theory has a model (A, ! / , •••) 
with card A>card l/^Xo, then it has a model (23, V, • • •) with card £=Ni , 
card V=K0. This theorem is a downward Löwenheim-Skolem type theorem 
but it is much more difficult to prove (the 'substructure' version, requiring 
that the second model be a submodel of the first, cannot be proved in ZFC, 
Zermelo-Fraenkel set-theory with the axiom of choice, cf. §7.4). There are 
two distinct refinements of this theorem, one being the actual (stronger) 
result proved by Vaught (Corollary 3.2.13), the other the two-cardinal 
theorem of Keisler (3.2.14). Vaught's proof evolved from his notion of 
homogeneous models. Keisler's proof is entirely different and relies on the 
Omitting Types Theorem. There is one feature of Keisler's proof that often 
arises in other situations and that constitutes the main idea in many proofs. 
This has been called the method of expansions. With this, one exploits 
(expresses part of) a hypothesis made on a structure by introducing new 
predicates that, in combination with the old ones, satisfy interesting first 
order properties. In Keisler's proof, one has a structure A of power a+ and 
a distinguished subset U of power a. One introduces a predicate denoting a 
well ordering of A of order type a+. The interesting (useful) first order 
properties will be those that express that the whole structure is not cofinal 
with any (first order definable) sequence indexed by elements of U (a 
consequence of the regularity of a+). These results, besides being interesting 
themselves, are also very useful (often in ways going beyond the material of 
the book). 

A third topic is model completeness (pp. 110-115), a notion introduced 
by A. Robinson, which is very important for applications to algebra. A 
theory T is model complete if for models A and B of T, if A is a submodel 
of J3, then A is an elementary submodel of B. The primary example is the 
theory of algebraically closed fields. 

A fourth group of results belongs to "descriptive logic". This includes 
Craig's interpolation theorem, its application to the proof of Beth's theorem, 
preservation theorems for substructures, homomorphisms, and unions of 
chains of models. 

4. Indiscernibles. The notion of order indiscernibles due to Ehrenfeucht 
and Mostowski (1956) is perhaps the most typical of model-theoretical ideas 
in its being a mixture of algebraic and set-theoretical elements (if one 
regards linear orderings as "set-theoretic"). Let A be a structure, X a subset 
of A, < a linear ordering of X ( < is not necessarily a distinguished relation 
of A). We call (X, <) a set of (order) indiscernibles of A if any two n-tuples 
of elements of X, ordered increasingly by < , have the same first order 
properties in A. An important but obvious point about this notion is that it 
"has a finite character" meaning that (X, <) is a set of indiscernibles in A iff 
every finite subset of X is, "relative to any finite set of formulas" in the 
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obvious sense. This enables one to use the compactness theorem to con
struct models with indiscernibles and with or without additional properties. 
Let us note that there are other notions related to indiscernibles with a 
similar finite character; these are certain 'patterns' of elements consisting of 
a set (such as X above) and having some prescribed behavior with respect to 
formulas. Many such patterns occur in Shelah's work on stability. 

The fundamental general theorem on order indiscernibles is Theorem 
3.3.11 that concerns so called theories with built-in Skolem functions. For 
example, a part of Theorem 3.3.11, the stretching theorem tells us how to 
generate models with arbitrary ordered sets as indiscernibles once one is 
given with an infinite set of indiscernibles. 

The decisive step in proofs using indiscernibles with or without special 
properties is to create them outright, or, to create their arbitrarily large 
finite "subpatterns". In the simplest case when one is interested in the mere 
existence of a model with infinitely many indiscernibles, for theories having 
infinite models, it turns out that the finite patterns can be created by using 
Ramsey's famous 1930 combinatorial theorem. Together with the funda
mental properties of indiscernibles (Theorem 3.3.11), this construction 
already gives very good results. One is the Ehrenfeucht-Mostowski result on 
the existence of models with many automorphisms (3.3.13), another is 
Morley's theorem on the existence of models realizing 'few' types over 
'small' subsets (3.3.14). The latter uses a set of indiscernibles that is well 
ordered (although the conclusion has nothing to do with such matters). 
Below we will see how indiscernibles with special properties are constructed 
and used. 

Skipping Chapter 4 for a moment, let us turn to 

5. Saturated models (Chapter 5). Given a model A and a subset X of 
A, a set X(t>) of formulas <\>{v) with the single free variable v but with 
(names for) elements in X might be considered as a specification of the 
behaviour of an undetermined and hypothetical element v with respect to X. 
X(v) is realized in A if there actually is an element in A satisfying each 
formula in £(u). 2(u) is a type over X in A if (i) it is consistent in the sense 
that every finite subset of it is realized in A and (ii), it is complete, i.e. 
maximal among consistent such sets. Structures that are saturated to a 
certain degree are those that realize all their types of a certain kind. In the 
case of the a-saturated structures, for a cardinal a, these are the types over 
sets X of power less than a. A structure is (simply) saturated if it is 
a-saturated in its own power a. 

One of the basic theorems of the theory of saturation is the existence 
theorem of a-saturated models in certain powers. Unfortunately, (simply) 
saturated structures can be proved to exist in sufficient generality only if one 
assumes the generalized continuum hypothesis (GCH), or else, the existence 
of inaccessible cardinals. This is unfortunate because saturated structures 
have very nice properties. One is their uniqueness, meaning that they are de
termined up to isomorphism by their first order theory and their cardinality. 
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A rather more complicated notion (that is, more complicated to use) is 
the notion of special model which, however, does have most of the nice 
properties (including uniqueness) and also exists in abundance. Notions of 
saturation are closely related to homogeneity and universality (treated in 
§5.1) which are the basic notions for the first systematic theory of the 
subject given by Morley and Vaught in 1962. 

As far as the aesthetic appropriateness of the means for the aim is 
concerned, perhaps the best applications of saturated and special models are 
to definability theory (§5.3). Here one can exploit very effectively the 
possibility given in saturated structures of making compactness arguments 
without moving out of the given structure. Definability theory has evolved 
from Beth's 1953 theorem and is the most typical part of "descriptive 
logic". Interest in it has not decreased up to now when it is being done very 
effectively in infinitary logic. There are many elegant results in the field that 
also have the advantage of being intrinsically more interesting than most 
other results of the descriptive theory. 

Other applications given in §5.2 of these tools are new proofs of previous 
preservation theorems as well as improvements of them. A fairly large body 
of results concerning intersections of models is included here, partly in the 
exercises. These contain ingenious applications of the method of expansions 
(see above). 

§5.4 contains some of the representative applications of model theory to 
algebra. Theorem 5.4.4 is Tarski's theorem saying that the theory of real 
closed fields is complete (i.e., any two real closed fields satisfy the same 
sentences). The proof given in the book also establishes a result due to 
Erdös, Gillman and Henriksen (1955) stating that any two real closed fields 
whose order structures are isomorphic saturated orderings of a successor 
cardinality are isomorphic. To infer Tarski's theorem from the last statement 
one needs the GCH (to show the existence of saturated models). Using an 
argument from axiomatic set theory (due to Gödel), on the basis of the 
logical form of Tarski's theorem, one sees however that once Tarski's 
theorem is established using the GCH, it follows that it is a theorem of 
ZFC. This curious argument is used repeatedly in the same chapter, and in a 
more essential way, in Chapter 6. As the authors remark, Tarski's theorem 
itself could be established quite similarly by the use of special models 
without a detour via GCH but at the expense of more work in the main part 
of the proof. This remark applies to the rest of Chapter 5 too but apparently 
not to Chapter 6. There are several different treatments in the literature, 
mostly quoted in the book, of the material of Chapter 5. 

The fundamental theorem of Ax and Kochen, and independently, of 
Ershov, is somewhat analogous to Tarski's theorem but is more complex. It 
states that a so-called Henselian valued field with cross section having a 
residue class field of characteristic 0 has a first order theory that is deter
mined by the first order theory of the residue class field and that of the value 
group (Theorem 5.4.12). The proof (besides having a very similar outline to 
that of Tarski's theorem) is full of algebraic details, many of them only 
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quoted. The famous application is an 'almost affirmative' solution to Artin's 
conjecture, viz. the result that for each positive integer d there exists a finite 
set ip of primes such that for every prime p£ I/J, every polynomial with more 
than d2 variables of degree d over the field Qp of p-adic numbers having 
zero constant term has a nontrivial zero in Qp (5.4.19). 

The last section is on the first order theories of Boolean algebras and it is 
a nice example of the use of model theory for a complete analysis of a 
concrete situation. It should be compared to Chapter 1 where the elemen
tary "method" of the elimination of quantifiers is used for direct analyses of 
similar situations. The results of this section are used in Chapter 6. In the 
exercises, the student is asked to perform such analyses, sometimes with 
different methods. 

6. Ultraproducts and generalizations (Chapters 4 and 6). Ultraproducts 
stand rather apart from the concerns of the parts of model theory related 
above. The basis of interest in the operation of ultraproduct is the fact that it 
is an 'algebraic' operation that preserves elementary properties, a funda
mental discovery of -Lós (1954). One defines the ultraproduct of a family 
(At :iel) of structures A,-, modulo an ultrafilter D of the Boolean algebra of 
all subsets of I to be the quotient of the full Cartesian product of the A 
modulo the equivalence defined as the equality of elements of the Cartesian 
product for 'almost all' (in the sense of D) indices / e I. 

From Los' theorem (Theorem 4.1.9), the main interest in ultraproducts is 
almost immediate and it lies in the possibility of characterizing model-
theoretical notions (such as 'elementary class') purely algebraically (i.e., by 
eliminating reference to formulas). This actually can be done to a remark
able extent, not readily foreseeable from Los' theorem. Another possibility is 
to exploit the special properties of models constructed as ultraproducts. It is 
probably fair to say that ultraproducts applied for the latter purpose are less 
interesting, at least from the point of view of the usual concerns of model 
theory. However, a very important and very special kind of application of 
ultraproducts belonging to the category in question is made for models of set 
theory. It is characteristic of the spirit of the book that the applications of 
ultraproducts to the study of measurable cardinals are presented in the 
'basic' part of the book. The results presented in 4.2 constitute one of the 
two breakthroughs of set theory achieved around 1960, and together with 
later developments it constitutes a fundamental contribution to our 
metamathematical knowledge. The Hanf-Tarski result of the 'largeness' of 
measurable cardinals (Theorem 4.2.14) can be (and was first) proved with
out ultraproducts but the stronger result, 4.2.23, seems to depend on 
ultraproducts more essentially. This latter result also includes the statement 
that measurable cardinals (if they exist) are much greater than the first 
so-called weakly compact cardinal whose largeness was originally shown by 
Hanf. Theorem 4.2.23 is based on a truly great theorem, 4.2.21, of the kind 
that is both powerful as far as consequences are concerned and striking as it 
is that states that for a measurable cardinal a the model Ra of all sets of 
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rank <a with the e-relation is isomorphic to the ultraproduct of the models 
Rp (fi<a) modulo a normal ultrafilter. 

The power of ultraproducts is also demonstrated by the proof of Scott's 
theorem to the effect that the axiom of constructibility implies that there is 
no measurable cardinal, a result that has important refinements discussed in 
Chapter 7. The subject of 'large cardinals' (a phrase referring to various 
conditions on cardinals ensuring their being 'large', i.e. inaccessible and 
more) receives a remarkably complete coverage in the book despite the fact 
that it does not belong to model theory in the strict sense. In §4.2 and in the 
related exercises the reader learns about measurable, weakly compact, and 
various 'indescribable' cardinals, with many details of interesting facts. 

Let us return now to what we described as the first source of interest in 
ultraproducts. After initial results (presented in 4.1 and 4.3), the definitive 
results are given in 6.1 and 6.4. The reasons for this procedure of putting 
this material into the 'advanced' part is the considerable technical sophisti
cation of the proofs. The main result here is the "isomorphism theorem" 
(Theorem 6.1.15): two structures satisfy the same sentences iff they have 
isomorphic ultrapowers. This theorem has an interesting history. Keisler 
proved it first using the GCH in 1961 and for the purposes of the proof he 
(later) isolated the notion of a 'good' ultrafilter. One (but not the only) 
problem left was proving the existence of good ultrafilters without the GCH. 
This was settled in the positive by Kunen (1973) (Theorem 6.1.4). Consider
able further work by Shelah was needed to prove the isomorphism theorem 
without GCH. The various kinds of ultrafilters (regular, good, etc.) are 
covered to a remarkable extent partly in the exercises. These present some 
interesting unsolved problems, heavily set-theoretical in nature. 

Without going into details about the contents of 6.4 and 6.5, let us note 
that it is possible to formulate the results in 6.4 in a way (that the reviewer 
learned from A. Joyal) that brings them neatly in line with the idea of 
algebraic characterization of first order "operations". 6.5 is on iterated 
ultraproducts whose main applications are in set-theory. 

Under this heading, there remains to discuss §§6.2 and 6.3 (also belonging 
to 'advanced' model theory) which are quite different from the previous 
ones and in fact describe quite curious matters. The material here originates 
from some three sources. One is Keisler's theorem that characterizes up to 
logical equivalence those sentences that are preserved under reduced prod
ucts (similar to ultraproducts but with an arbitrary proper filter in place of 
an ultrafilter) as the so-called Horn sentences (prenex sentences with ma
trices that are conjunctions of implications whose antecedent is a conjunction 
of atomic formulas and whose succèdent is a single atomic formula). 
Actually, this theorem was proved by Keisler using the GCH through the 
use of saturated models, and the use of GCH was later eliminated by 
Galvin. Galvin's proof is based on the same principle as the elimination of 
GCH from the proof of Tarski's theorem mentioned above but it is much 
more complex. This brings us to the other source, upon which also Galvin's 
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work is ultimately based. This is the 'early' but in itself quite comprehensive 
and complete work of Feferman and Vaught (1959) on 'generalized prod
ucts'. This work is not treated in full in the book but it should be 
mentioned as one of the most influential papers of model theory, both 
completing a long line of investigations and giving rise to new ones. The gist 
of the Feferman-Vaught paper is a very elementary method, the elimination 
of quantifiers (Chapter 1), lifted to a higher level and giving results of a very 
general nature on the dependence of the first order theories of results of 
many algebraic operations ('products') on those of the 'factors'. The work of 
Weinstein and Galvin ('autonomous sets of formulas'), although in spirit 
similar to the Feferman-Vaught work, was a new twist and it applied to the 
more special situation of direct products and reduced products only; this 
work is reproduced to a large extent in 6.3. Besides the elimination of GCH, 
the most striking result emerging is Galvin's theorem (amazingly, not stated 
in these words in the book!) stating that every sentence is logically equiva
lent to a Boolean combination of Horn sentences (6.3.18 and 6.2.5' jointly). 
The reviewer does not know of a proof of this purely syntactic result that 
does not go along something like the long and tortuous way traversed in the 
book. (A third source is the analysis of elementary theories of Boolean 
algebras, §5.4, which gives rise to Ershov's theorem, 6.3.20.) 

7. More of 'advanced' model theory (Chapter 7). Chapter 7 contains 
varied material and is the result of an effort to give a view of further topics 
of 'advanced' model theory. §§7.1 and 7.2 start developing themes that are 
at the heart of model theory as commonly understood, whereas §§7.3 and 
7.4 are, to some extent, in the vein of applications of model-theoretic ideas 
to set theory. Compared to the first two sections, the last two are under
standably more complete since what comes after those contributions to set 
theory can no longer be considered model theory. But the first two sections 
just touch the tips of (two) icebergs in the middle of model theory. 

§7.1 is on Morley's work on categoricity. A theory T is called categorical in 
power a if any two models of power a of T are isomorphic. Los conjectured in 
1954 that if a countable theory is categorical in one uncountable power, it is in 
any other. Morley proved this conjecture and in the process, he introduced many 
important tools and concepts, like the property of a theory being w-stable. The 
treatment in the book is the result of a gradual simplification of Morley's proof, 
but it is still quite involved. The basic tools in 7.1 are Keisler's two-cardinal 
theorem (3.2.14) which, through the "method of expansions" allows one to 
conclude e.g., that if a countable theory has a nonsaturated model in an 
uncountable power then it has one in power o)x (this is the key to the proof that if 
the theory is categorical in Xi, it is in all higher powers). Another tool is Morley's 
theorem (3.3.14) on models realizing 'few types' which is used to establish that a 
theory categorical in an uncountable power is o)-stable. The main use of 
co -stability is to develop a relative version of the theory of atomic (prime) models, 
also no longer confined to countable models as before. Using the latter theory, an 
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ingenious idea of Baldwin and Lachlan gives a direct way to construct arbitrarily 
large nonsaturated models, given that there is one in power Xl9 which establishes 
the other 'direction' of Morley's theorem. 

Indiscernibles that figured prominently in Morley's work (e.g. in the last 
part of the proof) are almost eliminated in the above proof (except for the 
implicit use through Morley's theorem). Also, the concept of rank of 
transcendence is eliminated. There is some indication of this latter notion as 
an addendum to the proof of the categoricity theorem. 

For the reader who is interested in related subjects, G. Sacks' book 
Saturated model theory (Benjamin, 1972) is warmly recommended. This 
work develops the general theory of co-stability and uses ranks of transcen
dence heavily; it contains more on categorical theories and interesting 
connections to differential fields. It should be pointed out further that 
"stability theory" (dealing with notions related to co-stability) has been 
vastly developed mainly by Shelah but also by others. It has turned out that 
this theory has relevance to questions of a more general nature than 
categoricity, viz. the determination of the cardinal number of nonisomorphic 
models in a given power and the possibility of a structure theory for models 
of a given theory. 

§7.2 contains three, both historically and theoretically, fundamental 
theorems. The first, Theorem 7.2.2, is Morley's theorem on omitting types, 
which determines the cardinal ("Hanf number") a such that for any count
able theory T and any type 2 ( D ) , in order to conclude that there are 
arbitrarily large models of T omitting 2 , it is enough to know that T has a 
model in each power less than a that omits 2 . a is X , , the <oist iterated 
power of Ko. Morley's proof of this theorem was probably suggested by his 
earlier work on categoricity since in both cases there is a similar use of 
indiscernibles that, through the "stretching theorem", give a way of 
"generating" arbitrarily large models. Compared to the Ehrenfeucht-
Mostowski work, the basic 'pattern' now, however, is more difficult to 
construct because we have to make sure that the models generated by the 
indiscernibles will actually omit the type 2 . The tool is a transfinite generali
zation of Ramsey's theorem, the Erdös-Rado partition theorem. 

The true context of Morley's theorem is infinitary logic as explained in 
Exercises 7.2.13. 

The second theorem is another two-cardinal theorem of Vaught, given 
here with a proof found by Morley, again using indiscernibles in a similar 
way. The last of the three theorems is a two-cardinal theorem of Chang that 
says if a countable theory T has a model (A, [/,-••) such that card A > 
card L/^Xo and a is a regular cardinal such that 2a = a+, then T has a model 
(£, V, • • •) such that card B = a+ and card V=a. The proof of this theorem 
uses a surprising and ingenious trick of 'coding' ('expansion') and a rel
ativized version of saturation. 

The 'iceberg', the tip of which is §7.2, consists of extensions of model theory to 
infinitary logic and generalized quantifiers. Vaught's and Chang's two-cardinal 
theorems were directly applied by Fuhrken (Fund. Math. 54,291-302 and The 
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theory of models, North-Holland, 1965,121-131 ; f or an exposition, see also Bell 
and Slomson, Models and ultraproducts, North-Holland) to generalized 
quantifiers. For the same purposes Fuhrken also used the important notion of 
a-like orderings mentioned in Exercises 7.3.42-7.3.49 of the book. After 
Fuhrken, several people including Keisler and Shelah made important 
contributions to the subject. 

The book mentions (without proofs, of course) some interesting develop
ments that took place in axiomatic set-theory in relation with two-cardinal 
theorems. 

The final two sections, 7.3 and 7.4, of the book, return to subjects of a 
more metamathematical interest. The main results presented here are state
ments of the effect of the existence of large cardinals on the structure of the 
class of constructible sets, culminating in Theorem 7.4.7, a result of succes
sive approximations by Gaifman, Rowbottom and Silver. But even this 
purely set-theoretic result is derived more or less directly from general 
model-theoretical theorems; thus here we have genuine applications of 
model theory to set theory. 

The notion of a Ramsey cardinal is introduced; Ramsey cardinals are 
'large' cardinals 'between' weakly compact and measurable cardinals. The 
two main results of §7.3 are Rowbottom's theorem 7.3.16 and Silver's 
theorem 7.3.18; both are downward Löwenheim-Skolem results and assert 
the existence of special kinds of elementary submodels of models whose 
power is a Ramsey cardinal. Silver's theorem is a much more elaborate 
result than Rowbottom's earlier result. There are numerous other results, 
partly on Jonsson models (models not having proper elementary submodels 
of their own power), partly on "Chang's conjecture" that is the problem of 
downward two-cardinal theorems holding in the strong "substructure" ver
sion. In 7.4 it is shown among others that "Chang's conjecture" does not 
hold in the constructible universe for any nontrivial combination of the 
cardinalities involved. 

8. Concluding remarks. As we said above, the book is written with 
extreme care in all respects, reflecting the styles of both of the authors in 
their other writings. Great care was taken to ensure that each chapter and 
each section be a balanced unit, with its due share of 'basic' work and 'deep' 
insights. Many hundreds of exercises, ranging "from extremely easy to 
impossibly difficult", complete the material presented in the text. In their 
other writings the authors have been instrumental in developing the flexible 
and elegant modes of notation presently widely used in model theory; they 
will be even more widely popularized through the present book (and can be 
appreciated best by trying to read model theory not written with this 
notation). There are very complete historical remarks. 

As is obvious, it must have been very difficult to decide on the material to 
be taken up in the book. At any rate, as a result of the authors' choices, one 
feels that the rather more essentially set-theoretical parts of model theory, 
such as ultraproducts and models of large cardinality received a better 
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treatment than the rest. One feels this not so much because of the relative 
amount of space devoted to the various subjects but rather because these 
'set-theoretical' results are more final and self-sufficient in character than the 
others, some of which sometimes appear to be somewhat technical and not as 
much justified in themselves. 

Many things (Keisler's two-cardinal theorem, Morley's "Hanf-number" 
theorem on omitting types) could have been put in their true contexts only 
in extensions of first order model theory (generalized quantifiers, infinitary 
logic). 

A particular matter that should have received more attention in the book 
is Fraissé-Ehrenfeucht games (and some generalizations). These are treated 
only in exercises. These games are important, particularly through the work 
of Lindström who applied them to give a theory of preservation theorems 
("regular relations") (Theoria 32 (1966), 171-185), and to his celebrated 
work on characterizing first order logic. 

It should be added to the discussion of transcendence rank that the rank 
of a formula defined in a not necessarily coi-saturated model is simply taken 
to mean rank in any (cf. Lemma 7.1.20) wi-saturated elementary extension. 
Then the first sentence of the proof of 7.1.23 can be deleted, and it should 
be because as it stands it is incorrect. Furthermore, the proof of 7.1.23 uses 
the fact that a is regular (and Victor Harnik tells us that the theorem is false 
without this assumption). 

The proof of 7.2.2 is written up in a somewhat awkward way, and in fact, 
the induction hypothesis (4) is not stated correctly. In the proof of 7.3.7, the 
definition of the structure A was omitted (but can be guessed). On p. 480 
the numerical code (1) should be shifted to the next displayed formula. 

In the review, the reviewer could not bring himself to suppressing the use of 
the word "structure" in favor of the word "model" as it is done in the book. 

In conclusion, let us say that in this book model theory has received a 
thoroughly worthy exposition that will no doubt help establish the deserved 
status of model theory as an original, rich, useful and mature branch of 
mathematics. 

M. MAKKAI 
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Mathematical theory of dislocations and fracture, by R. W. Lardner, Univer
sity of Toronto Press, Toronto, 1974, xi + 363pp. 

The mathematical theory of elasticity has a rich and varied history. It is 
concerned with the mathematical study of the response of elastic bodies to 
the action of forces. There is no doubt that the linear theory is one of the 
more successful theories of mathematical physics. A beautiful account of this 
theory is found in Gurtin (1970). 

The first attempt to set the elasticity of bodies on a scientific foundation 
was undertaken by Galileo and is described in his Discourses, published in 


