TOPOLOGY OF QUATERNIONIC MANIFOLDS

BY VIVIAN YOH KRAINES ${ }^{1}$

Communicated by S. S. Chern, December 30, 1964
We give here a quaternionic analogue (Theorem 4) of the Hodge decomposition theorem [2, p. 26] for a Riemannian manifold with holonomy group contained in $\operatorname{Sp}(n) \times \operatorname{Sp}(1)$. Applying Chern's theorem in [1] (also [3]), we obtain some consequences on Betti numbers (Theorem 5).

Let K^{n} denote the n-dimensional vector space over the field K of quaternions, with the inner product

$$
(p, q)=\frac{1}{2} \sum_{i=1}^{n}\left(p_{i} \bar{q}_{i}+q_{i} \bar{p}_{i}\right),
$$

where

$$
\begin{aligned}
p & =\left(p_{1}, \cdots, p_{n}\right), \quad q=\left(q_{1}, \cdots, q_{n}\right) \text { and } \\
p_{i} & =p_{i}^{0}+p_{i}^{1} i+p_{i}^{2} j+p_{i}^{3} k, \\
q_{i} & =q_{i}^{0}+q_{i}^{1} i+q_{i}^{2} j+q_{i}^{3} k
\end{aligned}
$$

are quaternions.
Let $\operatorname{Sp}(n)$ be the set of all endomorphisms, A, of K^{n}, satisfying the identity $(A \boldsymbol{p}, A \boldsymbol{q})=(\boldsymbol{p}, \boldsymbol{q}) . \operatorname{Sp}(n)$ is the set of all $n \times n$ matrices preserving the inner product. Then $\operatorname{Sp}(1)$ is the set of all unit quaternions. We define the action of $\operatorname{Sp}(n) \times \operatorname{Sp}(1)$ on K^{n} as follows:

$$
(A, \lambda) p=A p \lambda, \quad \text { for }(A, \lambda) \in \operatorname{Sp}(n) \times \operatorname{Sp}(1),
$$

i.e., we multiply \boldsymbol{p} on the left by the matrix A and on the right by the unit quaternion λ.

Definition. We define three skew symmetric bilinear forms Ω_{I}, Ω_{J} and Ω_{K} on K^{n} as follows:

$$
\begin{aligned}
& \Omega_{I}(p, q)=(p i, q), \\
& \Omega_{J}(p, q)=(p j, q) \text { and } \\
& \Omega_{K}(p, q)=(p k, q) .
\end{aligned}
$$

Note that Ω_{I}, Ω_{J} and Ω_{K} may be thought of as exterior 2 -forms of K^{n} considered as a $4 n$-dimensional real vector space.

[^0]Definition. We define an exterior 4 -form Ω on K^{n} by

$$
\Omega=\Omega_{I} \wedge \Omega_{I}+\Omega_{J} \wedge \Omega_{J}+\Omega_{K} \wedge \Omega_{K}
$$

Theorem $1 . \Omega$ is invariant under the action of $\operatorname{Sp}(n) \times \operatorname{Sp}(1)$.
Theorem 2. $\Omega^{n}=\Omega \wedge \Omega \wedge \cdots \wedge \Omega(n$ times $) \neq 0$.
Definition. A $4 n$-dimensional Riemannian manifold M is called a quaternionic manifold if its holonomy group is a subgroup of $\operatorname{Sp}(n)$ $\times \operatorname{Sp}(1)$.

If M is a quaternionic manifold of dimension $4 n$, then, by Theorems 1 and 2 , we have a differential 4 -form Ω on M of maximal rank (i.e., $\Omega^{n} \neq 0$) which is parallel. Hence, Ω is a harmonic form. From the fact that $\Omega^{n} \neq 0$, we have

Theorem 3. If B_{i} denotes the ith Betti number of a quaternionic manifold M of dimension $4 n$, then we have $B_{4 i} \neq 0$ for $i=0,1, \cdots, n$.

We define the operator ${ }^{*}$ which sends a p-form into a ($4 n-p$)-form in the usual way.

Definition. Define two operators L and Λ on the differential forms by

$$
L w=\Omega \wedge w, \quad \Lambda w={ }^{*}\left(\Omega \wedge^{*} w\right) .
$$

A differential form w is called effective if $\Lambda w=0$.
Theorem 4. Let w be a p-form; then

$$
w=w_{e}^{p}+L w_{e}^{p-4}+\cdots+L^{r} w w_{e}^{p-4 r}, \text { for } p \leqq n,
$$

where w_{e}^{k} is an effective k-form, and $r=[p / 4]$.
From Theorem 4, it follows that L sending p-forms into ($p+4$)forms is $1-1$ for $p \leqq n-4$.

Theorem 5. We have an increasing sequence of Betti numbers,

$$
\begin{gathered}
B_{i} \leqq B_{i+4} \leqq \cdots \leqq B_{i+4 r}, \text { for } i+4 r \leqq n, i=0,1,2 \text { or } 3 . \\
\text { BIBLIOGRAPHY }
\end{gathered}
$$

1. S. S. Chern, On a generalization of Kähler geometry, Algebraic geometry and topology. A Symposium in honor of S. Lefschetz, pp. 103-121, Princeton Univ. Press, Princeton, N. J., 1957.
2. A. Weil, Introduction à l'étude des variétés Kähleriennes, Hermann, Paris, 1958.
3. —_, Théorème fondamental de Chern en géomêtrie riemannienne, Séminaire Bourbaki, 14e année, 1961/62, no. 239.

University of California, Berkeley

[^0]: ${ }^{1}$ This research is supported by NSF Contract No. GP-1610. The author wishes to express her gratitude to Professor Shoshichi Kobayashi.

