THE HAUPTVERMUTUNG AND THE POLYHEDRAL SCHOENFLIES THEOREM

BY P. M. RICE

Communicated by M. L. Curtis, December 28, 1964

- 1. Introduction. M. L. Curtis [1] has conjectured that the double suspension of a Poincaré manifold is a 5-sphere. If this is true, it gives counterexamples to the Hauptvermutung, the closed star conjecture, and the polyhedral Schoenflies theorems. We prove here that the only way to get a noncombinatorial triangulation of a manifold is, essentially, to multiply suspend a combinatorial manifold which is not a sphere. As a corollary, we establish that, modulo the Poincaré conjecture, one of the polyhedral Schoenflies theorems is equivalent to the Hauptvermutung.
- 2. **Terminology.** The Hauptvermutung is the conjecture that any two triangulations of an n-manifold are piecewise linearly homeomorphic. It is convenient to consider two conjectures which together imply the Hauptvermutung. The first is that any triangulation of an n-manifold is combinatorial (meaning that the link of any vertex is a combinatorial (n-1)-sphere), and the second is that any two combinatorial triangulations of an n-manifold are piecewise linearly homeomorphic. We will call the first of these H(n). H(n) is known for n=1, 2, 3. PS(n) will denote the conjecture that, if a combinatorial (n-1)-sphere S is embedded as a subcomplex of a triangulated n-sphere T, then S is locally flat in T. PS(n) is known for n=1, 2, 3. P(n) will be the n-dimensional Poincaré conjecture, which is known except for n=3, 4. S^n will be any space homeomorphic to the n-sphere, $X \cong Y$ means X is homeomorphic to Y, $X \circ Y$ is the topological join of X and Y, and S(X) is the suspension of X.

3. Main result.

THEOREM. If there is a noncombinatorial triangulation of an n-manifold M, then there is a combinatorial m-manifold K^m , $m \ge 3$, such that

- (i) K^m is a homology m-sphere but $K^m \neq S^m$ and
- (ii) $K^m \circ S^{n-m-1} \cong S^n$.

PROOF. Let v be a vertex of M such that LK(v, M), the link of v in M, is not a combinatorial (n-1)-sphere. If $LK(v, M) = K^{n-1}$ is a combinatorial manifold, then $S(K^{n-1}) \cong S^n$ by Theorem 4 of [2] and the theorem is proved. By induction, if $K^p \circ S^{n-p-1} \cong S^n$ but K^p is not

522 P. M. RICE

a combinatorial manifold, then, for some vertex w of K^p , $LK(w, K^p) = K^{p-1}$ is not a combinatorial (p-1)-sphere. But $St(w, K^p) = w \circ K^{p-1}$ and $St(w, K^p) \circ S^{n-p-1} \cong E^n$, so $(w \circ K^{p-1}) \circ S^{n-p-1} = w \circ (K^{p-1} \circ S^{n-p-1})$ is locally n-euclidean at w, and, by Theorem 4 of [2],

$$S(K^{p-1} \circ S^{n-p-1}) = K^{p-1} \circ S^{n-p} \cong S^n.$$

For some $m \ge 3$, K^m is a combinatorial manifold, for, if not, then $K^2 \circ S^{n-3} \cong S^n$, so K^2 is a polyhedral homology manifold with the homology of S^2 , whence $K^2 \cong S^2$, and, since H(2) is true, K^2 is a combinatorial 2-sphere, from which it would follow that K^3 is a combinatorial manifold.

COROLLARY 1. Suppose that a combinatorial (n-1)-sphere is embedded as a subcomplex of a triangulated n-sphere such that the closure of one complementary domain is a combinatorial n-cell. If this implies that the other complementary domain is simply connected, then P(3) and P(4) imply H(n).

PROOF. Let K^m be as in the theorem, and v a vertex of K^m . St (v, K^m) o S^{n-m-1} is a combinatorial n-cell embedded as a subcomplex of $K^m \circ S^{n-m-1} \cong S^n$. Then

$$(K^m \circ S^{n-m-1}) \setminus (\operatorname{St}(v, K^m) \circ S^{n-m-1}) = (K^m \setminus \operatorname{St}(v, K^m)) \times E^{n-m}$$

is simply connected. Thus K^m is a simply connected, combinatorial, homology sphere, which, by the Poincaré conjecture, is an m-sphere.

COROLLARY 2. P(3), P(4), PS(n) implies H(n), and H(n) implies PS(n).

PROOF. The last statement follows from the combinatorial Schoenflies theorem.

REFERENCES

- 1. M. L. Curtis and E. C. Zeeman, On the polyhedral Schoenflies theorem, Proc. Amer. Math. Soc. 11 (1960), 888-889.
- 2. R. H. Rosen, Stellar neighborhoods in polyhedral manifolds, Proc. Amer. Math. Soc. 14 (1963), 401-406.

University of Georgia