THE CHARACTERIZATION OF FUNCTIONS ARISING AS POTENTIALS. II

BY E. M. STEIN¹

Communicated by A. Zygmund, August 8, 1962

1. Statement of result. We continue our study of the function spaces L^p_{α} , begun in [7]. We recall that $f \in L^p_{\alpha}(E_n)$ when $f = K_{\alpha} * \phi$, where $\phi \in L^p(E_n)$. K_{α} is the Bessel kernel, characterized by its Fourier transform $K_{\alpha}(x)^{2} = (1 + |x|^{2})^{-\alpha/2}$. It should also be recalled that the space L^p_{k} , $1 , with k a positive integer, coincides with the space of functions which together with their derivatives up to and including order k belong to <math>L^p$; (see [2]).

It will be convenient to give the functions in L^p_{α} their strict definition. Thus we redefine them to have the value $(K_{\alpha} * \phi)(x)$ at every *point* where this convolution converges absolutely. With this done, and if $\alpha - (n-m)/p > 0$, then the restriction of an $f \in L^p_{\alpha}(E_n)$ to a fixed *m*-dimensional linear variety in E_n is well-defined (that is, it exists almost everywhere with respect to *m*-dimensional Euclidean measure). The problem that arises is of characterizing such restrictions.

The problem was previously solved in the following cases:

(i) When p is arbitrary, but $\alpha = 1$, in Gagliardo [3].

(ii) When p=2, and α is otherwise arbitrary in Aronszajn and Smith [1]. In each case the solution may be expressed in terms of another function space, W_{α}^{p} , which consists of those $f \in L^{p}(E_{n})$ for which the norm²

$$||f||_{p} + \left[\int_{E_{n}} \int_{E_{n}} \frac{|f(x-y) - f(x)|^{p}}{|y|^{n+\alpha p}} dx dy\right]^{1/p}$$

is finite, when $0 < \alpha < 1$. When $0 < \alpha < 2$, there is a similar definition of W^p_{α} (consistent with the previous one for $0 < \alpha < 1$) which replaces the difference f(x-y) - f(x) by the second difference f(x-y) + f(x+y)-2f(x). Finally for general $\alpha \ge 2$, the spaces W^p_{α} are defined recurrently by $f \in W^p_{\alpha}$ when $f \in L^p$ and $\partial f / \partial x_n \in W^p_{\alpha-1}$, $k = 1, \dots, n$.

In stating our result we let E_m denote a fixed proper *m* dimensional subspace of E_n , and Rf denote the restriction to E_m of a function defined on E_n .

¹ The author wishes to acknowledge the support of the Alfred P. Sloan Foundation.

² Such norms were considered when n=1 in [5]. The space is also considered in [6] and [9]; in the latter it is denoted by $\Lambda_{\alpha}^{p,p}$.

THEOREM. (a) The restriction mapping R is continuous from $L^p_{\alpha}(E_n)$ to $W^p_{\beta}(E_m)$, if $\beta = \alpha - (m-n)/p$, as long as $\beta > 0$, and 1 .

(b) Conversely, there exists a linear extension mapping \mathcal{E} , defined on functions of E_m to function of E_n , so that \mathcal{E} is continuous from $W^p_\beta(E_m)$ to $L^p_\alpha(E_n)$, and $R(\mathcal{E}(g)) = g$ for every $g \in W^p_\beta(E_m)$, as long as $\beta > 0$ and 1 .³

It should be pointed out that the spaces L^p_{α} , when either α is integral or p=2, are in some sense exceptional. Only in these cases can the elements of L^p_{α} be characterized in terms of the L^p modulus of continuity (i.e. conditions bearing on $||f(x-y)-f(x)||_p$ when say $0 < \alpha \leq 1$). In particular, L^p_{α} is equivalent with W^p_{α} only if p=2; see Taibleson [9]. It is known⁴ that the restrictions of $W^p_{\alpha}(E_n)$ are elements of $W^p_{\beta}(E_m)$ with $\beta = \alpha - (n-m)/p$. As we shall see, this result is an immediate consequence of our theorem. Thus we have the interesting situation of two different spaces, L^p_{α} and W^p_{α} , having identical restriction spaces.

2. **Proof of the Theorem.** What follows is a sketch of the proof, details omitted. We consider the case m = n - 1, $0 < \alpha < 1$; the general case is dealt with similarly. We shall make consistent use of the following notation: latin letters, x, y, z, \cdots will stand for variables of E_{n-1} considered as a subspace of E_n ; greek letters ξ, η, ζ, \cdots for points in E_1 , which is the orthogonal subspace. Thus the pair (x,ξ) belongs to E_n . Also if $f(x, \xi)$ is a function defined on E_n , then $||f(\cdot, \xi)||_p$ will denote L^p norm with respect to the x variable, ξ fixed; $||f(\cdot, \cdot)||_p$ will denote the norm taken over both variables. Using the same convention, $||g(\cdot+y)-g(\cdot)||_p$ will stand for

$$\left(\int_{-\infty}^{+\infty} \left| g(x+y) - g(x) \right|^p dx \right)^{1/p}.$$

We make consistent use of the following classical estimate [4].

LEMMA. If $\Phi(\xi) = \int_0^\infty K(\xi, \eta)\phi(\eta)d\eta$, where K is homogeneous of degree -1, then $\int_0^\infty |\Phi(\xi)|^p d\xi \leq A^p \int_0^\infty |\phi(\eta)|^p d\eta$, where

$$A = \int_0^\infty \left| K(1, \eta) \right| \eta^{-1/p} d\eta < \infty.$$

Now suppose that $f \in L^p_{\alpha}(E_n)$; then $f = K_{\alpha} * \phi$ where $\phi \in L^p(E_n)$; and the norm of f in L^p , $||f||_{p,\alpha}$, is given by $||f||_{p,\alpha} = ||\phi||_p$. Let g = R(f). Then

578

² The mapping \mathcal{E} is defined on all locally integrable functions of E_m .

⁴ This result is due to several Soviet authors. For references see [9], and the paper of O. V. Besov in Trudy Steklov Inst. Acad. Sci. USSR **60** (1961), 42-81.

$$g(x) = \int_{-\infty}^{\infty} \int_{E_{n-1}} \phi (x - z, \xi) K_{\alpha}(z, \xi) dz d\xi.$$

Hence,

$$|g(x)| \leq \int_{E_{n-1}} ||\phi(x-z,\cdot)||_p ||K(z,\cdot)||_q dz,$$

where 1/p+1/q=1. From this it follows that

(1)
$$||g||_{p} \leq ||\phi(\cdot, \cdot)||_{p} \int_{E_{n-1}} ||K(z, \cdot)||_{q} dz = A ||\phi||_{p} = A ||f||_{p,a}.$$

This is a consequence of the fact that $\int_{E_{n-1}} ||K_{\alpha}(z, \cdot)||_q dz < \infty$ if $\alpha - 1/p > 0$, which follows easily from the estimates

$$K_{\alpha}(z, \xi) = O(|z|^2 + \xi^2)^{(-n+\alpha)/2} \quad \text{for } |z|^2 + \xi^2 \to 0,$$

and

$$K_{\alpha}(z,\xi) = O\left(\exp{-\frac{(|z|^2 + \xi^2)^{1/2}}{2}}\right) \quad \text{for } |z|^2 + \xi^2 \to \infty;$$

see [1].

Next, define $g_{\xi}(x)$ by $g_{\xi}(x) = \int_{E_{n-1}} \phi(x-z, \xi) K_{\alpha}(z, \xi) dz$. Thus $g(x) = \int g_{\xi}(x) d\xi$. We have

$$\|g_{\xi}(\cdot+y)-g_{\xi}(\cdot)\|_{p}\leq \|\phi(\cdot,\xi)\|_{p}\int_{E_{n-1}}|K_{\alpha}(z-y,\xi)-K_{\alpha}(z,\xi)|\,dz.$$

Using the fact, (see, [1]) that $\nabla K_{\alpha} = O(|x|^2 + \xi^2)^{(-n-1+\alpha)/2}$ and the previous estimates on K_{α} , it can be shown that the last integral is dominated by $A|y|^{-1+\alpha}\psi(\xi/|y|)$, where $\psi(u) = O(|u|^{-1+\alpha})$ as $u \to 0$ and $O(|u|^{-2+\alpha})$ as $u \to \infty$, $(0 < \alpha < 1$, here). From this it follows that $\|g(\cdot - y) - g(\cdot)\|_{\mathcal{P}} \le A \left[\int_{0}^{\infty} |\xi|^{-1+\alpha} \|\phi(\cdot, \xi)\| d\xi + \|y\| \int_{0}^{\infty} |\xi|^{-2+\alpha} \|\phi(\cdot, \xi)\| d\xi \right]$

$$\leq A \left[\int_{|\xi| \leq |y|} |\xi|^{-1+\alpha} \|\phi(\cdot,\xi)\|_p d\xi + |y| \int_{|\xi| \geq |y|} |\xi|^{-2+\alpha} \|\phi(\cdot,\xi)\|_p d\xi \right].$$

An application of the lemma then shows, since $1 > \alpha > 1/p$,

(2)
$$\int_{B_{n-1}} \frac{\|g(\cdot - y) - g(\cdot)\|_{p}^{p}}{|y|^{n-2+\alpha p}} dy \leq A \int_{-\infty}^{\infty} \|\phi(\cdot, \xi)\|_{p}^{p} d\xi$$
$$= A \|\phi\|_{p}^{p} = A \|f\|_{p,\alpha}^{p}.$$

Combining this with (1) above proves part (a) of the theorem. To

1962]

E. M. STEIN

prove the converse, assume that $g \in W^p_{\beta}(E_{n-1})$, and g is sufficiently smooth. The smoothness is no restriction of generality since our estimates will be seen to be uniform in the norm. To define the extension operator, choose $\psi \in C_0^{\infty}(E_{n-1}), \int_{E_{n-1}} \psi(x) dx = 1$, and ψ vanishes outside the unit sphere. Also choose $\lambda \in C_0^{\infty}(E_1)$ so that $\lambda(0) = 1$.

Let

(3)
$$\delta(g) = f(x,\xi) = \lambda(\xi) \left| \xi \right|^{-n+1} \int_{E_{n-1}} g(x-y) \psi(y/\left| \xi \right|) dy.$$

Notice that f(x, 0) = g(x) and $||f(\cdot, \cdot)||_p \leq A ||g||_p$.

In order to prove that $f \in L^p_{\alpha}(E_n)$, we shall consider $F = J_{1-\alpha}(f)$, and show that $F \in L^p_1(E_n)$. This will suffice because $J_{1-\alpha}$ is a normpreserving isomorphism of L^p_{α} onto L^p_1 . To prove $F(x, \xi) \in L^p_1(E_n)$ it suffices to show that F, $\partial F/\partial x_k$, $\partial F/\partial \xi$ all belong to $L^p(E_n)$. However, this is clear for F itself, because $f \in L^p(E_n)$ and $J_{1-\alpha}$ does not increase the L^p norm. Thus we consider $\partial F/\partial x_k$. Now

$$F(x, \xi) = \int \int K_{1-\alpha}(z, \eta) f(x-z), \xi - \eta) dz d\eta.$$

However

$$\left|\frac{\partial f}{\partial x_k}(x,\xi)\right| \leq A \left|\xi\right|^{-n} \int_{|y| \leq |\xi|} \left|g(x-y) - g(x)\right| dy,$$

by (3), because

$$\int \frac{\partial}{\partial x_k} \psi(x) dx = 0$$

and ψ vanishes outside the unit sphere. Also, as we have seen $|K_{1-\alpha}(z, \xi)| \leq A(|z|^2 + \xi^2)^{(-n+1-\alpha)/2}$. Therefore we see

(4)
$$\left| \frac{\partial}{\partial x_k} F(x, \xi) \right| \leq A \int \int \left(\left| z \right|^2 + \eta^2 \right)^{(-n+1-\alpha)/2} \left| \xi - \eta \right|^{-n} \\ \cdot \int_{|y| \leq |\xi-\eta|} \left| g(x-y-z) - g(x-z) \right| dy dz d\eta.$$

Let us now set $\omega(y) = ||g(\cdot - y) - g(\cdot)||_p$, and

$$\Omega(\rho) = \rho^{-n+1-\alpha} \int_{|y|<\rho} \omega(y) dy, \qquad 0 < \rho < \infty.$$

Then by (4) and Minkowski's inequality for integrals we get

$$\begin{aligned} \left\| \frac{\partial F}{\partial x_k} \left(\cdot, \xi \right) \right\|_p \\ &\leq A \int_{E_{n-1}} \int_{-\infty}^{\infty} \left(\left| z \right|^2 + \eta^2 \right)^{(-n+1-\alpha)/2} \left| \xi - \eta \right|^{-1+\alpha} \Omega\left(\left| \xi - \eta \right| \right) d\eta dz. \end{aligned}$$

Carrying out the integration of z over E_{n-1} gives

$$\begin{aligned} \left\| \frac{\partial F}{\partial x_k} \left(\cdot, \xi \right) \right\|_p &\leq A \int_{-\infty}^{+\infty} \left| \eta \right|^{-\alpha} \left| \xi - \eta \right|^{-1+\alpha} \Omega(\left| \xi - \eta \right|) d\eta \\ &= A \int_{-\infty}^{\infty} \left| \xi - \eta \right|^{-\alpha} \left| \eta \right|^{-1+\alpha} \Omega(\left| \eta \right|) d\eta. \end{aligned}$$

A two-fold application of the lemma then shows, since $\alpha > 1/p$,

$$\begin{split} \left\|\frac{\partial F}{\partial x_k}\right\|_p &= \left\|\frac{\partial F}{\partial x_k}\left(\cdot,\cdot\right)\right\|_p \leq A \int_0^\infty [\Omega(\rho)]^p d\rho \leq A \int_{E_{n-1}} \frac{\omega^p(y) dy}{|y|^{n-1+\beta p}} \\ &= A \int_{E_{n-1}} \int_{E_{n-1}} \frac{|g(x-y) - g(x)|^p}{|y|^{n-1+\beta p}} \, dy dx.^5 \end{split}$$

Similar estimates hold for $\partial F/\partial \xi$. This completes the proof of the theorem.

3. Further remarks. We have the following corollary of our theorem

COROLLARY. (a) If $f \in L^p_{\alpha}(E_n)$, then $Rf \in L^p_{\beta}(E_m)$, when $\beta = \alpha - (n-m)/p > 0$, and 1 . $(b) If <math>g \in L^p_{\beta}(E_m)$, $\beta = \alpha - (n-m)/p > 0$, then $\delta(g) \in L^p_{\alpha}(E_n)$, if $2 \leq p < \infty$.

Part (a) of the corollary is due to Calderon [2]. Part (b) is its appropriate converse. The corollary follows from the theorem and the known continuous inclusion relations $W^p_{\alpha} \subset L^p_{\alpha}$, if $1 \leq p \leq 2$, and $L^p_{\alpha} \subset W^p_{\alpha}$ if $2 \leq p \leq \infty$; see Taibleson [9].

We shall now point out how to obtain an analogue of our theorem which replaces $L^p_{\alpha}(E_n)$ by $W^p_{\alpha}(E_n)$. Thus let $f \in W^p_{\alpha}(E_n)$. By part (b) of the theorem it has an extension to a function in E_{n+1} which belongs to $L^p_{\alpha+1/p}(E_{n+1})$. By part (a) this extension, when restricted to E_m , belongs to $W^p_{\beta}(E_m)$, where $\beta = \alpha - (n-m)/p$. However this restriction is obviously the restriction of our original f. Therefore the restriction of

1962]

⁵ To prove this one may also use an *n*-dimensional variant of the lemma; see [8, Lemma (3.5)].

an $f \in W^p_{\alpha}(E_n)$ belongs to $W^p_{\beta}(E_m)$. In the same way the analogous extension property is proved.

References

1. N. Aronszajn and K. T. Smith, *Theory of Bessel potentials*. I, Ann. Inst. Fourier 11 (1961), 385–475. (Reference [1] in paper [7] below.

2. A. P. Calderon, Lebesgue spaces of functions and distributions, Proc. Sympos. Pure Math. Vol. 4, pp. 33-49, Amer. Math. Soc., Providence, R. I., 1961. (Reference [2] in paper [7] below.

3. E. Gagliardo, Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305.

G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge, 1934.
I. I. Hirschman, *Fractional integration*, Amer. J. Math. 75 (1953), 531-546.

6. L. N. Slobodetzky, Dokl. Akad. Nauk SSSR 118 (1958), 243-246; 120 (1958), 468-471. (Russian)

7. E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.

8. E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514.

9. M. Taibleson, Smoothness and differentiability conditions for functions and distributions in E_n , Dissertation, University of Chicago, 1962.

UNIVERSITY OF CHICAGO

582