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Let G be a locally compact group with left invariant Haar measure 
m. For any measurable subset S of G, define Ls to be that subset of 
L1(G) consisting of all functions which vanish (a.e.) on the comple­
ment of 5. When Ls forms an algebra, we call it a vanishing algebra. 
It is known that when 5 is a semigroup l.a.e. (i.e., there exists a semi­
group T in G such that S=T locally almost everywhere), Ls is a 
vanishing algebra. The following theorem gives an answer to a prob­
lem formulated by A. Simon [2]: 

THEOREM 1. Suppose G is unimodular. If Ls is a vanishing algebra 
and S is contained in a a-compact subset of G, then S is a semigroup a.e. 

COROLLARY 1. Suppose G is compact. Then, if Ls is a vanishing 
algebra, S is a semigroup a.e. 

COROLLARY 2. Suppose G is abelian and generated by some compact 
neighborhood of the identity element of G. Then, if Ls is a vanishing 
algebra, S is a semigroup a.e. 

The proof of Theorem 1 also gives the following more general and 
involved statement: 

THEOREM 2. Let Ls be a vanishing algebra. Suppose there exists a 
directed set { Ui, iÇzl} of symmetric neighborhoods of the identity ele­
ment e with finite measures, having the property that for almost all the 
points xofS there exists ajxÇ.I such that m(SC\x Ui) and m(x~l UiC^S"1) 
are both >m{ £/»)/2 as i *zjx. Then S is a semigroup l.a.e. /ƒ, in addition, 
S is contained in a o-compact subset of G, then S is a semigroup a.e. 

THEOREM 3. If Ls is a self-adjoint vanishing algebra, then S is a 
group l.a.e. If, in addition, S is contained in a a-compact subset of G, 
then S is a group a.e. 

THEOREM 4. Let Ls be a vanishing algebra. If S is open, then S is a 
semigroup l.a.e. If, in addition, S is contained in a <r-compact subset of 
G, then S is a semigroup a.e. 

THEOREM 5. If Ls is a maximal vanishing algebra, then S is a closed 
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semigroup l.a.e. If, in addition, S is contained in a a-compact subset of 
G, then S is a closed semigroup a.e. 

COROLLARY 3. Let G be abelian and generated by some compact neigh­
borhood of the identity element of G. If there exists a vanishing algebra Ls 

which is a maximal subalgebra in Ll(G), then G is either the additive 
group of real numbers or the discrete integer group. 
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