AN INEQUALITY RELATED TO THE ISOPERIMETRIC INEQUALITY

L. H. LOOMIS AND H. WHITNEY

In this note we shall prove the following theorem.
Theorem 1. Let m be the measure of an open subset O of Euclidean n-space, and let m_{1}, \cdots, m_{n} be the $(n-1)$-dimensional measures of the projections of O on the coordinate hyperplanes. Then

$$
\begin{equation*}
m^{n-1} \leqq m_{1} m_{2} \cdots m_{n} \tag{1}
\end{equation*}
$$

Note that for n-dimensional intervals with faces parallel to the coordinate hyperplanes, (1) holds with the equality sign.

With any reasonable definition of the ($n-1$)-dimensional measure s of the boundary of $O, s \geqq 2 m_{i}$ for each i, so that (1) gives

$$
\begin{equation*}
m^{n-1} \leqq s^{n} / 2^{n} ; \tag{2}
\end{equation*}
$$

this is the isoperimetric inequality, without the best constant. Since the proof of the isoperimetric inequality with the best constant is difficult, ${ }^{1}$ and since its applications do not necessarily require the best constant, our elementary proof of the theorem may be of some interest.

We first reduce the problem to a combinatorial one, in the following theorem.

Theorem 2. Let S be a set of cubes from a cubical subdivision of n-space; let S_{i} be the set of ($n-1$)-cubes obtained by projecting the cubes of S onto the ith coordinate hyperplane. Let N and N_{i} be the numbers of cubes in S and S_{i} respectively. Then

$$
\begin{equation*}
N^{n-1} \leqq N_{1} N_{2} \cdots N_{n} \tag{3}
\end{equation*}
$$

Assuming Theorem 2, we prove Theorem 1 as follows. Given $\epsilon>0$, choose a cubical subdivision of n-space into cubes of side δ, with δ so small that if S is the set of cubes interior to O forming the set \bar{S}, $\mu(O-\bar{S})<\epsilon$ ($\mu=$ measure). Then

$$
[\mu(\bar{S})]^{n-1}=N^{n-1} \delta^{n(n-1)} \leqq\left(N_{1} \delta^{n-1}\right) \cdots\left(N_{n} \delta^{n-1}\right) \leqq m_{1} \cdots m_{n}
$$

and since ϵ is arbitrary, (1) follows.

[^0]Proof of Theorem 2. ${ }^{2}$ If $n=2$, the theorem is clear; we shall use induction on n. Each cube of S projects into an interval on the first coordinate axis; let I_{1}, \cdots, I_{k} be the intervals thus obtained. Let T_{i} be the set of cubes projecting onto I_{i}, and let $T_{i j}$ be the set of ($n-1$)cubes obtained by projecting the cubes of T_{i} into the j th coordinate hyperplane $(j=2, \cdots, n)$. Let a_{i} and $a_{i j}$ be the numbers of cubes in T_{i} and $T_{i j}$ respectively. Clearly

$$
\begin{array}{lr}
\sum_{i=1}^{k} a_{i}=N, & a_{i} \leqq N_{1}(i=1, \cdots, k) \\
\sum_{i=1}^{k} a_{i j}=N_{j} & (j=2, \cdots, n) . \tag{5}
\end{array}
$$

Also, by induction,

$$
\begin{equation*}
a_{i}^{n-2} \leqq a_{i 2} \cdots a_{i n} \quad(i=1, \cdots, k) \tag{6}
\end{equation*}
$$

From (6) and the second part of (4) we obtain

$$
a_{i}^{n-1} \leqq N_{1} a_{i 2} \cdots a_{i n} \quad(i=1, \cdots, k)
$$

Now using successively the first part of (4), the above inequality, Hölder's inequality, and (5), we see that

$$
\begin{aligned}
N & =\sum_{i=1}^{k} a_{i} \leqq \sum_{i=1}^{k} N_{1}^{1 /(n-1)} \prod_{j=2}^{n} a_{i j}^{1 /(n-1)} \\
& \leqq N_{1}^{1 /(n-1)} \prod_{j=2}^{k}\left(\sum_{i=1}^{m} a_{i j}\right)^{1 /(n-1)}=\prod_{j=1}^{n} N_{j}^{1 /(n-1)}
\end{aligned}
$$

as required.

Harvard University

[^1]
[^0]: Received by the editors July 31, 1948.
 ${ }^{1}$ See E. Schmidt, Über das isoperimetrische Problem in Raum von n Dimensionen, Math. Zeit. vol. 44 (1939) pp. 689-788.

[^1]: ${ }^{2}$ The authors are indebted to M. R. Demers for a simplification in the proof of this theorem.

