INTEGRAL EXTENSIONS OF A RING

HAROLD CHATLAND AND H. B. MANN

Introduction. Let R be a commutative ring with a unit element and let $a, b \subset R$.

Definitions. (1) a and b are said to be coprime in R if $\tau \subset R$, $\tau / a, \tau / b$ implies $\tau / 1$.
(2) A ring R^{\prime} is called an integral extension of R if $R^{\prime} \supset R$ and $a=b r, a, b \subset R, r \subset R^{\prime}$ implies there exists an element $\bar{r} \subset R$ such that $a=b \bar{r}$.
(3) a and b are said to be absolutely coprime if they are coprime in every extension R^{\prime} of R. In this paper it is shown that to every set of ideals of a commutative ring there exists an extension of the ring such that every ideal of the set is the intersection of the ring and a principal ideal of its extension. This is the main result and is given in Theorem 2. In a particular case of Theorem 2 it is shown in Theorem 1 that $a, b \subset R$ are absolutely coprime if and only if there exist elements $x, y \subset R$ such that $a x+b y=1$.

Similar results for algebraic integers are well known [1]. ${ }^{1}$ In the special case where the domains considered are completely integrally closed and the ideals have finite bases, a different extension fulfilling the conditions of Theorem 2 was obtained by Kronecker [2].

The extension of R. An extension of R, in the sense of this paper, may be obtained in the following manner. We first form the ring $R(u)$ by adjoining to R the elements $u^{n}, n= \pm 1, \pm 2, \cdots$, transcendental over R and such that $u^{n} a=a u^{n}, a \subset R$. Let \mathfrak{a} be the ideal generated by the set A of elements a, b, \cdots of R. Then the subring R^{\prime} of $R(u)$ consisting of all "polynomials"

$$
a_{-m} u^{-m}+a_{-m+1} u^{-m+1}+\cdots+a_{-1} u^{-1}+a_{0}+a_{1} u+\cdots+a_{n} u^{n}
$$

with $a_{i} \subset R$ and $a_{-r} \subset \mathfrak{a}^{r}, r>0$, is an integral extension of R for $R^{\prime} \supset R$. Moreover if $c=d h, c, d \subset R, h \subset R^{\prime}$, then

$$
h=e_{-m} u^{-m}+\cdots+e_{-1} u^{-1}+e_{0}+e_{1} u+\cdots+e_{n} u^{n}
$$

$e_{i} \subset R, e_{-r} \subset \mathfrak{a}^{r}$. Multiplying by d we have

$$
c=d e_{-m} u^{-m}+\cdots+d e_{-1} u^{-1}+d e_{0}+d e_{1} u+\cdots+d e_{n} u^{n}
$$

[^0]Since $c \subset R$, all terms involving u must vanish. Hence $c=d e_{0}$ and R^{\prime} is an integral extension of R.

Results.

Theorem 1. $a, b \subset R$ are absolutely coprime if and only if there exist elements $x, y \subset R$ such that $a x+b y=1$.

Clearly the condition is sufficient. Use the above extension R^{\prime} of R where A consists of a and b. In $R^{\prime}=R\left(a u^{-1}, b u^{-1}, u\right), u$ is a common divisor of a and b. If a and b are absolutely coprime, u must be a unit divisor. Hence

$$
u^{-1}=\alpha_{-m} u^{-m}+\cdots+\alpha_{-1} u^{-1}+\alpha_{0}+\alpha_{1} u+\cdots+\alpha_{n} u^{n}
$$

$\alpha_{i} \subset R, \alpha_{-r} \subset \mathfrak{a}^{r}$. Since u is trancendental over R all terms in the sum must vanish except $\alpha_{-1} u^{-1}$. But $\alpha_{-1} \subset \mathfrak{a}$ and hence is of the form $a x+b y$. Multiplying by u we have

$$
1=a x+b y
$$

Remark. If, \bar{x}, \bar{y} are elements of R such that

$$
a \bar{x}+b \bar{y}=1
$$

then the pair $x, y \subset R$ is also a solution if and only if $x=\bar{x}+b \mu$, $y=\bar{y}-a \nu$ where $a b \mu=a b \nu$.

Substitution shows the condition to be sufficient. Moreover if $a x+b y=1, \quad a \bar{x}+b \bar{y}=1$ then $a(x-\bar{x})=b(\bar{y}-y)$ and so $a \bar{x}(x-\bar{x})$ $=b(\bar{y}-y) \bar{x}$. Adding $b \bar{y}(x-\bar{x})$ to each side of the last equation we have

$$
x-\bar{x}=b(\bar{y}-y) \bar{x}+b \bar{y}(x-\bar{x})=b \mu
$$

Similarly $y-\bar{y}=-a \nu$.
But $a(x-\bar{x})=b(\bar{y}-y)$. Hence

$$
a b \mu=a b \nu
$$

Lemma. If \mathfrak{a} is an ideal in R, then there exists an extension R^{\prime} of R such that \mathfrak{a} is the intersection of R and a principal ideal of R^{\prime}.

Consider the extension R^{\prime} of R with $\mathfrak{a}=A$. In R^{\prime} the ideal (u) is principal and contains \mathfrak{a} and no other elements of R, for every element of \mathfrak{a} is obtained from the set of products $a u^{-1} x u$. Also for $\lambda \subset R^{\prime}$ suppose $\lambda u=c, c \subset R$. Then $\lambda=c u^{-1}$. Hence $c \subset \mathfrak{a}$ and $\mathfrak{a}=R \wedge(u)$.

Theorem 2. To every set of ideals of R there exists an extension R^{\prime} of R such that every ideal of the set is the intersection of R and a principal ideal of R^{\prime}.

To each ideal \mathfrak{a} in the set let there correspond an element $u_{\mathfrak{a}}$ transcendental over R. Form the ring $R(u)$ by adjoining $u_{\mathfrak{a}}^{n}$ to R where $u_{\mathrm{a}}^{n} a=a u_{\mathfrak{a}}^{n}, a \subset R, n= \pm 1, \pm 2, \cdots$ The subring R^{\prime} of $R(u)$ consisting of the "polynomials"

$$
\sum a_{r_{1} r_{2} \ldots} u_{1}^{r_{1}} u_{2}^{r_{2}} \ldots, \quad a_{r_{1} r_{2} \ldots} \subset R
$$

with the condition that $a_{r_{1} r_{2} \cdots r_{i}}$ belong to $\mathfrak{a}_{i}^{-r_{i}}$ if r_{i} is negative, is an integral extension of R. This follows by the method demonstrated above. For if $l=m n, l, m \subset R, n \subset R^{\prime}$ then

$$
n=\sum \beta_{r_{1} r_{2}} \ldots u_{1}^{r_{1}} u_{2}^{r_{2}} \ldots
$$

where $\beta_{r_{1} r_{2}} \ldots$ are certain $a_{r_{1} r_{2}} \ldots$. Hence

$$
l=m n=\sum m \beta_{r_{1} r_{2}} \ldots u_{1}^{r_{1} u_{2}^{r_{2}}} \cdots
$$

But since the indeterminates u_{i} are transcendental over R and $l \subset R$, all terms in the sum, except the constant term $m \beta_{0}$, must vanish. Hence $b=m \beta_{0}$.

We proceed as in the lemma. Consider the principal ideal (a). All of the elements $a^{(i)}$ of \mathfrak{a} may be obtained as products $a^{(i)} u_{\mathfrak{a}}^{-1} \cdot u_{\mathfrak{a}}$. Moreover only the elements $a^{(i)} \subset R$ may be so obtained for suppose $\nu \subset R^{\prime}$ and $\nu u_{i}=d \subset R$. Then $\nu=d u_{i}^{-1}$. Hence $\mathfrak{a}=R \wedge\left(u_{i}\right)$.

Remark. In the case of non-commutative rings a result analogous to Theorem 2 holds for two-sided ideals.

References

1. H. Prufer, Neue Begrundung der algebraischen Zahlen Theorie, Math. Ann. vol. 94 (1925) pp. 198-244.
2. W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1935, pp. 124-127.

The Ohio State University

[^0]: Presented to the Society, November 28, 1947; received by the editors December 10, 1947, and, in revised form, April 19, 1948.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

