INTEGRAL EXTENSIONS OF A RING

HAROLD CHATLAND AND H. B. MANN

Introduction. Let R be a commutative ring with a unit element and let $a, b \subset R$.

DEFINITIONS. (1) a and b are said to be coprime in R if $\tau \subset R$, τ/a , τ/b implies $\tau/1$.

(2) A ring R' is called an integral extension of R if $R' \supset R$ and a = br, $a, b \subset R, r \subset R'$ implies there exists an element $\bar{r} \subset R$ such that $a = b\bar{r}$.

(3) a and b are said to be absolutely coprime if they are coprime in every extension R' of R. In this paper it is shown that to every set of ideals of a commutative ring there exists an extension of the ring such that every ideal of the set is the intersection of the ring and a principal ideal of its extension. This is the main result and is given in Theorem 2. In a particular case of Theorem 2 it is shown in Theorem 1 that $a, b \subset R$ are absolutely coprime if and only if there exist elements $x, y \subset R$ such that ax+by=1.

Similar results for algebraic integers are well known [1].¹ In the special case where the domains considered are completely integrally closed and the ideals have finite bases, a different extension fulfilling the conditions of Theorem 2 was obtained by Kronecker [2].

The extension of R. An extension of R, in the sense of this paper, may be obtained in the following manner. We first form the ring R(u) by adjoining to R the elements u^n , $n = \pm 1, \pm 2, \cdots$, transcendental over R and such that $u^n a = au^n$, $a \subset R$. Let \mathfrak{a} be the ideal generated by the set A of elements a, b, \cdots of R. Then the subring R'of R(u) consisting of all "polynomials"

$$a_{-m}u^{-m} + a_{-m+1}u^{-m+1} + \cdots + a_{-1}u^{-1} + a_0 + a_1u + \cdots + a_nu^n$$

with $a_i \subset R$ and $a_{-r} \subset \mathfrak{a}^r$, r > 0, is an integral extension of R for $R' \supset R$. Moreover if c = dh, c, $d \subset R$, $h \subset R'$, then

$$h = e_{-m}u^{-m} + \cdots + e_{-1}u^{-1} + e_0 + e_1u + \cdots + e_nu^n$$

 $e_i \subset R$, $e_{-r} \subset \mathfrak{a}^r$. Multiplying by d we have

 $c = de_{-m}u^{-m} + \cdots + de_{-1}u^{-1} + de_0 + de_1u + \cdots + de_nu^n.$

Presented to the Society, November 28, 1947; received by the editors December 10, 1947, and, in revised form, April 19, 1948.

¹ Numbers in brackets refer to the references cited at the end of the paper.

Since $c \subset R$, all terms involving u must vanish. Hence $c = de_0$ and R' is an integral extension of R.

Results.

THEOREM 1. a, $b \subset R$ are absolutely coprime if and only if there exist elements x, $y \subset R$ such that ax+by=1.

Clearly the condition is sufficient. Use the above extension R' of R where A consists of a and b. In $R' = R(au^{-1}, bu^{-1}, u)$, u is a common divisor of a and b. If a and b are absolutely coprime, u must be a unit divisor. Hence

$$u^{-1} = \alpha_{-m}u^{-m} + \cdots + \alpha_{-1}u^{-1} + \alpha_0 + \alpha_1u + \cdots + \alpha_nu^n$$

 $\alpha_i \subset R$, $\alpha_{-r} \subset \mathfrak{a}^r$. Since u is trancendental over R all terms in the sum must vanish except $\alpha_{-1}u^{-1}$. But $\alpha_{-1} \subset \mathfrak{a}$ and hence is of the form ax + by. Multiplying by u we have

$$1 = ax + by.$$

REMARK. If, \bar{x} , \bar{y} are elements of R such that

$$a\bar{x} + b\bar{y} = 1$$

then the pair x, $y \subset R$ is also a solution if and only if $x = \bar{x} + b\mu$, $y = \bar{y} - a\nu$ where $ab\mu = ab\nu$.

Substitution shows the condition to be sufficient. Moreover if ax+by=1, $a\bar{x}+b\bar{y}=1$ then $a(x-\bar{x})=b(\bar{y}-y)$ and so $a\bar{x}(x-\bar{x})=b(\bar{y}-y)\bar{x}$. Adding $b\bar{y}(x-\bar{x})$ to each side of the last equation we have

$$x - \bar{x} = b(\bar{y} - y)\bar{x} + b\bar{y}(x - \bar{x}) = b\mu.$$

Similarly $y - \bar{y} = -a\nu$.

But $a(x-\bar{x}) = b(\bar{y}-y)$. Hence

 $ab\mu = ab\nu$.

LEMMA. If a is an ideal in R, then there exists an extension R' of R such that a is the intersection of R and a principal ideal of R'.

Consider the extension R' of R with $\mathfrak{a}=A$. In R' the ideal (u) is principal and contains \mathfrak{a} and no other elements of R, for every element of \mathfrak{a} is obtained from the set of products $au^{-1}xu$. Also for $\lambda \subset R'$ suppose $\lambda u = c$, $c \subset R$. Then $\lambda = cu^{-1}$. Hence $c \subset \mathfrak{a}$ and $\mathfrak{a}=R \land (u)$.

THEOREM 2. To every set of ideals of R there exists an extension R' of R such that every ideal of the set is the intersection of R and a principal ideal of R'.

To each ideal \mathfrak{a} in the set let there correspond an element $u_{\mathfrak{a}}$ transcendental over R. Form the ring R(u) by adjoining $u_{\mathfrak{a}}^{n}$ to R where $u_{\mathfrak{a}}^{n}a = au_{\mathfrak{a}}^{n}, a \subset R, n = \pm 1, \pm 2, \cdots$. The subring R' of R(u) consisting of the "polynomials"

$$\sum a_{r_1r_2\ldots} u_1^{r_1} u_2^{r_2} \cdots, \qquad a_{r_1r_2\ldots} \subset R,$$

with the condition that $a_{r_1r_2\cdots r_i}$ belong to $\mathfrak{a}_i^{-r_i}$ if r_i is negative, is an integral extension of R. This follows by the method demonstrated above. For if l=mn, l, $m \subset R$, $n \subset R'$ then

$$n=\sum \beta_{r_1r_2\ldots} u_1^{r_1} u_2^{r_2} \cdots$$

where $\beta_{r_1r_2}$... are certain $a_{r_1r_2}$ Hence

$$l=mn=\sum m\beta_{r_1r_2\ldots}u_1^{r_1}u_2^{r_2}\cdots$$

But since the indeterminates u_i are transcendental over R and $l \subset R$, all terms in the sum, except the constant term $m\beta_0$, must vanish. Hence $b = m\beta_0$.

We proceed as in the lemma. Consider the principal ideal (a). All of the elements $a^{(i)}$ of a may be obtained as products $a^{(i)}u_{\mathfrak{a}}^{-1} \cdot u_{\mathfrak{a}}$. Moreover only the elements $a^{(i)} \subset R$ may be so obtained for suppose $\nu \subset R'$ and $\nu u_i = d \subset R$. Then $\nu = du_i^{-1}$. Hence $\mathfrak{a} = R \wedge (u_i)$.

REMARK. In the case of non-commutative rings a result analogous to Theorem 2 holds for two-sided ideals.

References

1. H. Prufer, Neue Begrundung der algebraischen Zahlen Theorie, Math. Ann. vol. 94 (1925) pp. 198–244.

2. W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1935, pp. 124-127.

THE OHIO STATE UNIVERSITY