A RECURRENCE FORMULA FOR $\zeta(2 n)$

HUAN-TING KUO

In the present paper I shall give a new recurrence formula for $\zeta(2 n)$. It differs from other similar formulas in one very important respect. In order to calculate $\zeta(4 n)$, for example, other formulas use the values of $\zeta(2), \zeta(4), \zeta(6), \cdots$ up to $\zeta(4 n-2)$, while mine only requires the values of $\zeta(2), \zeta(4), \zeta(6), \cdots, \zeta(2 n)$. So, for large values of n its advantage is manifest.

This new recurrence formula is

$$
\begin{align*}
C_{2 n}= & \frac{\pi(2 \pi)^{2 n-1}}{4\{(n-1)!\}^{2}(2 n-1)} \\
(1) & +\frac{1}{(n-1)!} \sum_{k=0}^{[n / 2]}(-1)^{k} \frac{C_{2 k}(2 \pi)^{2 n-2 k}}{(n-2 k)!(2 n-2 k)} \tag{1}\\
& +\frac{1}{\pi} \sum_{k=0}^{[n / 2]} \sum_{j=0}^{[n / 2]}(-1)^{k+j} \frac{C_{2 k} C_{2 j}(2 \pi)^{2 n-2 k-2 j+1}}{(n-2 k)!(n-2 j)!(2 n-2 k-2 j+1)},
\end{align*}
$$

where n is a positive integer, and where for simplicity we have put $C_{0}=-1 / 2$ and $C_{2 k}=\zeta(2 k)=\sum_{n=1}^{\infty} 1 / n^{2 k}, k=1,2,3, \cdots$.

To prove it, let us note that

$$
\frac{\pi-x}{2}=\sum_{n=1}^{\infty} \frac{\sin n x}{n}, \quad 0<x<2 \pi
$$

Repeated integration between limits 0 and x gives
(2) $\frac{\pi x^{2 m-2}}{2(2 m-2)!}+\sum_{k=0}^{m-1}(-1)^{k} \frac{C_{2 k} x^{2 m-2 k-1}}{(2 m-2 k-1)!}=(-1)^{m-1} \sum_{n=1}^{\infty} \frac{\sin n x}{n^{2 m-1}}$,
(3) $\frac{\pi x^{2 m-1}}{2(2 m-1)!}+\sum_{k=0}^{m}(-1)^{k} \frac{C_{2 k} x^{2 m-2 k}}{(2 m-2 k)!}=(-1)^{m} \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2 m}}$,
where the C 's have the same meaning as above. An application of Parseval's theorem to (2) would yield (1) with $n=2 m-1$ and a similar application to (3) would yield (1) with $n=2 m$. Thus (1) is true for all positive integral values of n.

Now, let us apply the formula to calculate, for example, $\zeta(2)$ and $\zeta(4)$.

We have
Received by the editors April 16, 1948.
$\zeta(2)=C_{2}=\frac{\pi(2 \pi)}{4}+\left(-\frac{1}{2}\right) \cdot \frac{(2 \pi)^{2}}{2}+\frac{(-1 / 2)(-1 / 2)(2 \pi)^{3}}{3 \pi}=\frac{\pi^{2}}{6}$,
and

$$
\begin{aligned}
\zeta(4)=C_{4}= & \frac{\pi(2 \pi)^{3}}{4 \cdot 3}+\left(-\frac{1}{2}\right) \frac{(2 \pi)^{4}}{2 \cdot 4}-\frac{\pi^{2}(2 \pi)^{2}}{6 \cdot 2} \\
& +\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) \frac{(2 \pi)^{5}}{\pi \cdot 2 \cdot 2 \cdot 5} \\
& +(-1)\left(-\frac{1}{2}\right)\left(\frac{\pi^{2}}{6}\right) \frac{2 \cdot(2 \pi)^{3}}{2 \cdot 3 \pi}+\frac{\pi^{4}(2 \pi)}{36 \pi}=\frac{\pi^{4}}{90}
\end{aligned}
$$

which are in accordance with the usual results.
National Wuhan University

