A RECURRENCE FORMULA FOR $\zeta(2n)$

HUAN-TING KUO

In the present paper I shall give a new recurrence formula for $\zeta(2n)$. It differs from other similar formulas in one very important respect. In order to calculate $\zeta(4n)$, for example, other formulas use the values of $\zeta(2)$, $\zeta(4)$, $\zeta(6)$, \cdots up to $\zeta(4n-2)$, while mine only requires the values of $\zeta(2)$, $\zeta(4)$, $\zeta(6)$, \cdots , $\zeta(2n)$. So, for large values of n its advantage is manifest.

This new recurrence formula is

$$C_{2n} = \frac{\pi (2\pi)^{2n-1}}{4\{(n-1)!\}^{2}(2n-1)}$$
(1) $+ \frac{1}{(n-1)!} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k} \frac{C_{2k}(2\pi)^{2n-2k}}{(n-2k)!(2n-2k)}$
 $+ \frac{1}{\pi} \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^{k+j} \frac{C_{2k}C_{2j}(2\pi)^{2n-2k-2j+1}}{(n-2k)!(n-2j)!(2n-2k-2j+1)},$

where *n* is a positive integer, and where for simplicity we have put $C_0 = -1/2$ and $C_{2k} = \zeta(2k) = \sum_{n=1}^{\infty} 1/n^{2k}$, $k = 1, 2, 3, \cdots$.

To prove it, let us note that

$$\frac{\pi-x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \qquad 0 < x < 2\pi.$$

Repeated integration between limits 0 and x gives

$$(2) \ \frac{\pi x^{2m-2}}{2(2m-2)!} + \sum_{k=0}^{m-1} (-1)^k \frac{C_{2k} x^{2m-2k-1}}{(2m-2k-1)!} = (-1)^{m-1} \sum_{n=1}^{\infty} \frac{\sin nx}{n^{2m-1}},$$

$$(3) \ \frac{\pi x^{2m-1}}{2m-1} + \sum_{k=0}^m (-1)^k \frac{C_{2k} x^{2m-2k}}{(2m-2k-1)!} = (-1)^m \sum_{n=1}^{\infty} \frac{\cos nx}{n^{2m-1}},$$

(3)
$$\frac{\pi N}{2(2m-1)!} + \sum_{k=0}^{\infty} (-1)^k \frac{C_{2k}N}{(2m-2k)!} = (-1)^m \sum_{n=1}^{\infty} \frac{\cos nN}{n^{2m}},$$

where the C's have the same meaning as above. An application of Parseval's theorem to (2) would yield (1) with n=2m-1 and a similar application to (3) would yield (1) with n=2m. Thus (1) is true for all positive integral values of n.

Now, let us apply the formula to calculate, for example, $\zeta(2)$ and $\zeta(4)$.

We have

Received by the editors April 16, 1948.

$$\zeta(2) = C_2 = \frac{\pi(2\pi)}{4} + \left(-\frac{1}{2}\right) \cdot \frac{(2\pi)^2}{2} + \frac{(-1/2)(-1/2)(2\pi)^3}{3\pi} = \frac{\pi^2}{6},$$

and

$$\begin{split} \zeta(4) &= C_4 = \frac{\pi (2\pi)^3}{4 \cdot 3} + \left(-\frac{1}{2}\right) \frac{(2\pi)^4}{2 \cdot 4} - \frac{\pi^2 (2\pi)^2}{6 \cdot 2} \\ &+ \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) \frac{(2\pi)^5}{\pi \cdot 2 \cdot 2 \cdot 5} \\ &+ (-1) \left(-\frac{1}{2}\right) \left(\frac{\pi^2}{6}\right) \frac{2 \cdot (2\pi)^3}{2 \cdot 3\pi} + \frac{\pi^4 (2\pi)}{36\pi} = \frac{\pi^4}{90}, \end{split}$$

which are in accordance with the usual results.

NATIONAL WUHAN UNIVERSITY