
GENERALIZED CONVEX FUNCTIONS AND SECOND 
ORDER DIFFERENTIAL INEQUALITIES 

MAURICIO MATOS PEIXOTO 

1. Introduction. A well known theorem states that a necessary and 
sufficient condition in order that the twice differentiable function 
y(x), a<x<b, be convex is that y"*£0. The condition y">0 is suffi
cient for the strict convexity of y. 

In the present paper we show that if convexity is taken in the 
generalized sense of E. F. Beckenbach [l, 2 ] , 1 a differential character
ization of the above type can be obtained. As a particular case of a 
general theorem concerning second order differential inequalities we 
obtain a recent result of S. Tchaplygin, V. N. Petrov and J. E. 
Wilkins [3] concerning linear differential inequalities. 

2. Generalized convexity. Let {F(x)} be a family of real functions 
of the real variable x defined for a<x<b and such that : 

(1) Each member of the family is a continuous function of x. 
(2) Given in the xy-plane two arbitrary points (xi, y\), (x2, ^2) 

such that a <xi <x 2 <b, there is a unique member of the family passing 
through these two points, that is, such that its graph passes through 
these two points. 

A function <£(#), a<x<b, is said to be convex relative to the family 
{F(X)}~-a sub-{F(x)} function in Beckenbach's notation—if, for 
arbitrary xi, X2 such that a<xi<x%<b, the member of the family, 
F\2(x)y which pasess through [xi, #(#1)], [#2, ^(^2)] is such that 

(3) <fr(x) S Fi2(%), xi ^ x ^ #2. 

If we have 

(4) 0(a) < Fu(x)t xi < x < x2, 

we say that </>(x) is strictly convex relative to the family {F(x)} or else 
that it is a strictly sub- {F(x)} function. 

The ordinary convexity is obtained if we take as the family {F(x)} 
the linear functions mx+n. 

3. An auxiliary theorem. $(x) being a sub-{^(x)} function and 
a<Xo<b we have proved elsewhere [4] the following theorem. 

THEOREM 1. There exist D(x) G {F(x)}, E(x) G {F(x)} such that 
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(5) D(xo) = E(xo) = <K*o), 

(6) E{%) S D(x) g 0(a), x0 < x < b, 

(7) JD(a) g £(*) g 0(x), a < x < xo. 

(8) If </>'(#o), E'(xo), D'(XQ) exist, then Ef(x0) =D'(x0) =</>'(#o). 

4. The family {ƒ?(#)} as solutions of a dififerential equation. Con
sider on the strip 5, a<x<b, — oo <y<-\- ce, the differential equa
tion 

(9) y" = G(x, y, y') 

and let us suppose: 
(10) the function G(x, y, y')f (x, y)ÇzS, — <*> < y ' < + oo, is con

tinuous; 
(11) to each point (xo, 3>o) £»S and — oo <y0' < + oc, there exists a 

unique solution y{x) of (9) defined for a<x<b such that 

y(%o) = yo, y'(*o) = V 

and we shall assume the continuity of this solution with respect to the 
initial values yo, yó ; 

(12) given two distinct points belonging to 5 there is a unique 
solution of (9) passing through these points. 

For some special types of G(x> y, y') it is possible to assure that this 
condition (12) holds [5, Chap. V, VI] . 

From now on {F(x)} will designate the family formed by the solu
tions of (9). Now, let <£(x), a<x<b, be a function with a continuous 
second derivative. Our main result is expressed by the following 
theorem. 

THEOREM 2. A necessary and sufficient condition that </>(x) be a sub-
{F(x)} function is that 

(13) <t>" ^ G(x, 0 , <£')> a < x <b. 

PROOF, (a) The condition is necessary. Let <p(x) be a sub- {F(x)} 
function and consider a generic point a<Xo<b. Consider <p(x) 
G {F(x)} such that 

(14) <p(x0) = <f}(x0), <p'(xo) = <t>f(xo). 

By Theorem 1 and (11) we have 

(15) <p(x) = D(x) = E(x) g <f>(x), a < x <b. 

We have by (14) 
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<t>(x) ~ <p(x) — <t>[xo + (x — Xo)] — <p[x0 + (x — Xo)] 

(16) (x - xo)2
 r 

= [»"(*o) ~ g"(*o) + 6] 

where e is infinitesimal with 
Suppose 

(17) 0"(*o) < *"(*o). 

In this case we have, in a suitable neighborhood of Xo, 

(18) 4>(x) < <p(x) 

which contradicts (15). As (17) is false, we must have, in virtue of 
(9) and (14), 

(19) 0"(so) à *>"(*o) = G[XQ, <t>(xo)y 0'(a?o)] 

for every a<Xo<b. Then (13) holds. 
(b) The condition is sufficient. Suppose that (13) holds. The demon

stration follows easily from the following lemmas: 

LEMMA 1. If (13) holds, to every a<xo<b there exists a J>>0 such 
that 

(20) <t>(x') - <p(x') à 0, | x' - x01 ^ v, | * ~ xo | ^ v, 

where <p(x) G {^(#)} is defined by 

(21) 7p{&) = *(*), £'(*) = *'(*). 

In fact, we have 

$(#') — ̂ (#') = #[# + {x' — #)] — 7p[x + (#' — #)] 

(22) -^"^V'^-y'O^L 
** = # + 0(#' - #), 0 < 0 < 1. 

As <t>n(x) is a continuous function, given arbitrarily e>0 , there exists 
h > 0 such that 

(23) * " ( * * ) > *"(*„) - c/2, | ̂  - *o | ^ *, | * - *o | ^ *. 

By the supposed continuity of the solutions of (9) relative to the 
initial values, there is an hi>0 such that 

(24) | £"(**) - *>"(**) | < e/4, | ^ - *o | â *i, | * - *o | â *i, 

<p(x) G {F(x)} satisfying (14). 
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By the continuity of <p"(x), there is an h2>0 such that 

(25) | *>"(**) - <p"(x0) | < 6/4, | ** - *o | â *i, | * ~ *o | S ht. 

If we put jf = min (A, &i, A2, 2
1/2/2) we have from (24) and (25) 

(26) £"(**) < *>"(*o) + e/2, | *' - Xo | ^ y, | x - #01 ^ P. 

From (22), (23), (26) and (19) we have 

4>{x>) - É(*0 > ( J / ^ *)% fo"(*0) - *"(*0) - e] 

(27) ( s ' - xY 
à - e â; - €, 

2 

I # ' —• #o I s i v, | # — #o I ^s *>. 
As e is an arbitrarily chosen positive number, (20) holds. 

DEFINITION 1. Let us say that a closed interval of (a, b) has the 
property (P) when the graph of <p(x) in this interval lies above or on 
any integral curve of (9), which at a point of the arc of <j>(x) cor
responding to the interval has the same slope as <£(#). 

In terms of this definition the above lemma states that any point 
a<xo<b is the center of a closed interval where the property (P) 
holds. 

LEMMA 2. The property (P) holds on every closed interval [a, ft], 
a<aSx^f5<b. 

In fact, by the application of Lemma 1 and the familiar Heine-
Borel theorem, we have that there are a finite number of closed in-
intervals covering [a, /3] for which the property (P) holds. Observe 
that the closed interval intersection of two closed intervals for which 
the property (P) holds is another closed interval for which this prop
erty holds. 

Then Lemma 2 is proved if we show that the closed interval union 
of two contiguous closed intervals having the property (P) is another 
closed interval for which this property holds. But this is easy to see. 
Indeed, let [xh x2], [x2, xd], xi<x2<xz, be the two closed intervals. 

We shall show that the property (P) holds on [xi, x3]. Let, for in
stance, Xi SXQSX2I and <p(x) £ {F(x)} be defined by (14). We have, as 
[xi, x2] has the property (P), 

(28) <p(x) g <f>(x)t xi g x g x2. 

Suppose 
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<p(%2) = 0(^2) . 

Let us show that we must have 

(29) <p'(x2) = *'(*,)• 

Indeed, according to (28), we must have 

(30) <p'{xt) è *'(*i). 

We shall show that the hypothesis 

(31) <p'(x2) > <i>'(x2) 

is false. In fact, suppose that ^ ( x ) £ {F(x)} is such that 

(32) f(xt) = *(*j). *'(*«) = *'(*t). 

Then, by property (P), we have 

(33) }f/{x) ^ #(#)> #1 ^ x ^ #3. 

We have also 

(34) <p(x) < \p(x), xi ^ x < x2, 

in virtue of (12) and of the fact that by (31) and (32) this inequality 
holds in some left neighborhood of #2. 

But from (14), (33) and (34) we have 

^(#0) S <K#o), iK#o) > <K#o) = 0(*o) 

and this is absurd. Therefore (31) is false and (29) must hold. By (11) 
we must have 

(35) <p(x) = \p(x) ^ <K#), %i =s x = ^3. 

Suppose now 
^(^2) < 0(#a). 

Then it is easy to see, in virtue of (11), that there must be a point 
#o<£<#2 such that 

(36) <p($ = * ( 0 . 

Therefore we have, by (12), 

(37) <P(X) < f(x) ^ <t>(x), £ < x < xz. 

Combining (28) and (37) we have 

<p(x) ^ <t>(x)} xi g x g #3. 

Then the property (P) holds on the closed interval [xi, Xz] and our 



568 M. M. PEIXOTO (June 

lemma is demonstrated. 
From this lemma follows immediately the proof of part (b) of our 

theorem. Indeed let a, (3 be two arbitrary numbers satisfying the 
condition a<a<fi<b. We must demonstrate that the 0(x) £ {F (pc)} 
defined by 

(38) 0(a) = *(a), 0(j8) = 4>(P) 

is such that 

(39) <j>{%) S 0(x), a S x ^ p. 

In fact suppose there is an a <X </3 such that 

(40) <KX) > 0(\) 

and consider the function <a(x) £ {F(x)} such that 

co(X) = *(X), co'(X) = *'(X). 

By Lemma 2 we know that 

(41) «(«) ^ *(«) = 0(a), a>(0) g 008) = 0(0). 

From (40) and (41) we conclude the existence of two numbers p, q, 
a<p<\<q<(3, such that 

HP) = «(#), 0(g) = «(g) 

and this contradicts (12). Therefore (40) is false and (39) must hold. 
So condition (13) is sufficient to secure that <j>(x) is a sub-{F(x)} 
function. Hence Theorem 2 is proved. 

REMARK. This theorem generalizes obviously the well known prop
erty of ordinary convex functions considered in the beginning. It also 
generalizes the result that the condition 

(42) 4>"(%) + 0(*) è 0 

is necessary and sufficient in order that the twice differentiable func
tion <j>(x) be convex relative to the family of solutions of the equa
tion 

y" + y = 0 

(x varying in an interval shorter than ir) which is equivalent [6, p. 98; 
7, p. 281] to a result due to G. Pólya. 

5. A sharper result. A sharper result is expressed by the following 
theorem. 

THEOREM 3. A sufficient condition in order that the twice differentiable 
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function <j>(x) be a strictly sub-{F(x)\ function is that 

(13') 4>" > G[x, 4, <£'], a < % < b. 

PROOF. The proof of this theorem is but slightly different from 
that of Theorem 2, part (b), and we shall only insist on the modifica
tions. I t follows easily from the following lemmas. 

LEMMA 1'. If (13') holds, to every a<xo<b there exists a number 
v>0 such that 

(20') 4>(x') - K O > 0 I x' - #01 ^ v, I x - xo J ^ v, x' y* *. 

To demonstrate this lemma it is sufficient to observe that in virtue of 
(130, $"(#0)— <p"(xo)>0 so that by (27) and from the arbitrariness 
of e we have (200-

DEFINITION 2. Let us say that a closed interval has the property 
(P0 when the graph of </>(x) lies above any integral curve of (9) which 
at a point of the arc of </>(x) corresponding to the interval has the 
same slope as <f>(x}—with the unique exception of the point of contact. 

The above lemma states that each point a<x0<b is the center of 
a closed interval where the property (P0 holds. 

LEMMA 2'. The property (Pf) holds on every closed interval (a, /3), 
a<a^x^(3<b. 

The demonstration is analogous to that of Lemma 2 and will not 
be given here. 

The proof of Theorem 3 follows easily. Indeed let a, /3 be two arbi
trary numbers satisfying the condition a <a </3 <b and 6(x) G {F(x)} 
defined by (38). We have shown that (39) holds. Now we shall show 
that we have 

(43) <t>(x) < 0(x), a < x < p. 

In fact, suppose there is a<%<(3 such that 

(44) 0 (0 = 0(Q. 

Then we have, by (39), 

(45) *'(*) = 0'«). 

By Lemma 2f we have that 

(46) 6(x) < 4>(x), a < x < fi, x j* £, 

and (46) contradicts (39). So (44) is false and (43) holds. The theorem 
is demonstrated. 

REMARK. The condition (130 '1S n ° t necessary in order that <j>(x) 
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be a strictly sub- {F(x)} function. This is not true even when the 
convexity is taken in the ordinary sense. For instance, 0(x)=# 4 , 
— oo < x < + oo, is obviously a strictly convex function but <£"(0) = 0 . 

6. The theorem of Tchaplygin. Consider the differential equation 

(47) y" = piy' + p2y + q, x^ xo, 

where pi(x), pi(x) and q(x) are continuous when X^XQ and let y(x) be 
a solution of this equation such that 

(48) y(x0) = y0, / (#o) = yo-

Suppose there exists a solution u(x) of 

(49) u" = pin' + p2u 

such that 

(50) u(x) 7* 0, Xo < x < %x. 

Let UQ(X) be a solution of (49) such that UQ(X0) = 0 , w0' (#o) = 1 and let 
X(xo) be the first zero of Uo{x) to the right of #o, if any such zero 
exists ; otherwise let X(xo) = + oo. Then a recent theorem of S. 
Tchaplygin, successively generalized by N. V. Petrov and J. E. 
Wilkins [3] states tha t : 

(I) If <t>(x) is such that 

(51) <j>" > pi<t>' + p2<t> + q, oo è xot 0(*o) = y(*o), <I>'(XQ) = y'(x0) 

then 

(52) <f>(x) > y(x), Xo < x ^ #i. 

(II) The interval Xo<x^X(x0) is the largest one in which the in
equality (52) can be asserted to hold. 

We shall prove that part (I) of this theorem can be deduced easily 
from Lemma 2 ' and Lemma 1'. 

In fact, from (50) it follows that in the strip Xo<x<x\, — °° <y 
< + oo, the equation (47) has the property (12) that there is a unique 
solution passing through two arbitrary points with distinct #-co-
ordinates. To see this known fact it is sufficient to observe that if u(x) 
is a solution of (49) another independent solution of this equation is 

u(x) f u~2(t) exp f px{t)dt dt. 

Therefore, we have by Lemma 2 ' that property (P') holds on every 
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closed interval contained in x0<x<Xi. 
According to (51), there is a number £<#i such that 

(53) <£(#) > y(x), xo < x g £. 

Let g(x) be the solution of (47) such that g(£) = 0 ( 0 , g'(£) =0'fê) . We 
have, by Lemma 2', that 

(54) 

If it is true that 

(55) 

g(x) < 4>(x), 

g(x) è y(x)f 

Xo < X < Xu X 7* £. 

#0 ê * < f, 

we conclude by (53) and (54) that g'(#o) =y'(xo), which is absurd. 
Then (55) is false and from the property (12) it follows that there 
exists a £o, #o<£o<£, such that 

g(io) = ytto), g(x) < y(x) for x0 < x < £0, 
(56; 

g(x) > y(x) for %o < x < xi. 

From (53), (54) and (56) it follows that 

(57) y(x) < 4>(x), xo < x < xi. 

So it is sufficient to demonstrate that 

(58) y(xi) < <l>(xi) 

in order to state that (52) holds. But from (54) it follows immediately 
that 

(59) g(xi) S *(*i)-

If g(#i)<$(#i)> then (58) follows from (56). Suppose now 

(60) g(xO = 0(*i). 

Using for the point X\ the reasoning of Lemma 1' we see that there is 
a point £o<£i<#i such that the solution h(x) of (47) determined by 
*(&) =0(fe), *'(&) =4>'(£i) is such that 

(61) /?(*) < *(*)> Si< x£ xi. 

Then, by (54), (60) and (61), we have that there exists a point £2, 
£i<£2<#i, such that 

(62) g(b) = *(&). 

Repeating the reasoning which showed the falseness of (55) we con
clude the existence of a number £3, £<£3<i*2, such that 
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(63) g(fc) = *({,). 

But (62) and (63) are in contradiction with property (12). So (60) is 
false and (52) holds. Our statement is proved. 

My thanks to Mrs. Marilia Chaves Peixoto. 
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