following lower bounds for \bar{x} and $\phi(\bar{x})$: (I) 10^{458}; (II) 10^{586}; (III) 10^{400}.

References

1. R. D. Carmichael, Note on Euler's ϕ-function, Bull. Amer. Math. Soc. vol. 28 (1922) pp. 109-110.
2. D. N. Lehmer, List of prime numbers, Carnegie Institution Publication, no. 165.

University of Virginia

ON THE DARBOUX TANGENTS

V. G. GROVE

1. Introduction. In a recent paper [1] ${ }^{1}$ Abramescu gave a metrıcal characterization of the cubic curve obtained by equating to zero the terms of the expansion of a surface S at an ordinary point O_{1}, up to and including the terms of the third order. This cubic curve is rational and its inflexions lie on the three tangents of Darboux through O_{1}. In this paper we give a projective characterization of such a curve, and hence a new derivation of the tangents of Darboux. By using the method employed in this characterization to the curve of intersection of the tangent plane of the surface at O_{1} with S, a simple characterization of the second edge of Green is found. Another application exhibits the correspondence of Moutard. Finally a new interpretation of the reciprocal of the projective normal is given in terms of the conditions of apolarity of a cubic form to a quartic form. The canonical tangent appears in a similar fashion.

Let S be referred to its asymptotic curves, and let the coordinates ($x^{1}, x^{2}, x^{3}, x^{4}$) of the generic point O_{1} of S be normalized so that they satisfy the system [2] of differential equations

$$
\begin{align*}
x_{u u} & =\theta_{u} x_{u}+\beta x_{v}+p x, \tag{1.1}\\
x_{v v} & =\gamma x_{u}+\theta_{v} x_{v}+q x, \quad \theta=\log R .
\end{align*}
$$

The line l_{1} joining O_{1} to O_{4}, whose coordinates are $x_{u v}^{i}$, is the R-conjugate line, and the line l_{2} determined by O_{2}, O_{3}, whose respective coordinates are x_{u}^{i}, x_{v}^{i}, is the R-harmonic line.

If we define the local coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with respect to

[^0]$O_{1} O_{2} O_{3} O_{4}$ of a point X by the expression
$$
X^{i}=x_{1} x^{i}+x_{2} x_{u}^{i}+x_{3} x_{v}^{i}+x_{4} x_{u v}^{i}
$$
and local nonhomogeneous coordinates (x, y, z) by $x=x_{2} / x_{1}, y=x_{3} / x_{1}$, $z=x_{4} / x_{1}$, the power series expansion [4] of S at O_{1} is
\[

$$
\begin{equation*}
z=x y-\frac{1}{3}\left(\beta x^{3}+\gamma y^{3}\right)+\frac{1}{12} F_{4}(x, y)+\cdots \tag{1.2}
\end{equation*}
$$

\]

wherein

$$
\begin{align*}
F_{4}(x, y)= & \left(2 \beta \theta_{u}-\beta_{u}\right) x^{4}-4\left(\beta \theta_{v}+\beta_{v}\right) x^{3} y-6 \theta_{u v} x^{2} y^{2} \tag{1.3}\\
& -4\left(\gamma \theta_{u}+\gamma_{u}\right) x y^{2}+\left(2 \gamma \theta_{v}-\gamma_{v}\right) y^{4} .
\end{align*}
$$

2. Characteristic points of a plane curve. Let the triangle of reference $O_{1} O_{2} O_{3}$ to which a plane curve C is referred be covariant to the curve or to a surface to which C bears some geometrical relation. Let the homogeneous coordinates of a point with respect to this triangle be (x_{1}, x_{2}, x_{3}), the nonhomogeneous coordinates being defined by the expressions $x=x_{2} / x_{1}, y=x_{3} / x_{1}$. The line $y=0$ being chosen as the tangent to C at O_{1}, the power series expansion [4] of C at O_{1} is

$$
\begin{equation*}
y=a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \cdots \tag{2.1}
\end{equation*}
$$

Consider at $O_{3}(0,0,1)$ the involution whose double lines are $O_{1} O_{3}$, $\mathrm{O}_{2} \mathrm{O}_{3}$. Corresponding lines of this involution intersect C in points $P_{1}(x, y), P_{2}\left(-x, y^{\prime}\right), y^{\prime}=a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}-\cdots$ The line $P_{1} P_{2}$ intersects the tangent to C at O_{1} in a point whose limit T as P_{1} approaches O_{1} along C has coordinates

$$
\begin{equation*}
x_{1}=a_{3}, \quad x_{2}=-a_{2}, \quad x_{3}=0 \tag{2.2}
\end{equation*}
$$

We shall call the point T with coordinates (2.2) the characteristic point of the second order of C at O_{1} relative to $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{2}$.

Let $O_{2}^{\prime}(\rho, 1,0)$ be an arbitrary point on the tangent to C at O_{1}, but distinct from O_{1}. The transformation from the triangle $O_{1} O_{2} O_{3}$ to $O_{1} O_{2}^{\prime} O_{3}$ is

$$
\begin{equation*}
x=\frac{A x^{\prime}}{1+\rho A x^{\prime}}, \quad y=\frac{B y^{\prime}}{1+\rho A x^{\prime}} \tag{2.3}
\end{equation*}
$$

Under the transformation (2.3), the equation of C may be written in the form

$$
y^{\prime}=a_{2}^{\prime} x^{\prime 2}+a_{3}^{\prime} x^{\prime 3}+\cdots,
$$

wherein

$$
a_{2}^{\prime}=A^{2} a_{2} / B, \quad a_{3}^{\prime}=A^{3}\left(a_{3}-\rho a_{2}\right) / B
$$

Hence the characteristic point of C relative to $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{2}^{\prime}$ has coordinates

$$
\begin{equation*}
x_{1}=\left(a_{3}-2 \rho a_{2}\right), \quad x_{2}=-a_{2}, \quad x_{3}=0 \tag{2.4}
\end{equation*}
$$

referred to $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$.
More generally let the equation of C have the form

$$
y=a_{k} x^{k}+a_{k+1} x^{k+1}+\cdots, \quad k \geqq 2
$$

Consider through O_{3} two lines forming with $O_{1} O_{3}, O_{2} O_{3}$ the constant cross ratio l, l being one of the k th roots of unity, but $l \neq 1$. These lines intersect C in two points P_{1}, P_{2} determining a line which intersects the tangent to C at O_{1} in a point whose limit as P_{1} approaches O_{1} has coordinates

$$
\begin{equation*}
x_{1}=a_{k+1}, \quad x_{2}=-a_{k}, \quad x_{3}=0 \tag{2.5}
\end{equation*}
$$

We shall call the point T whose coordinates are (2.5) the characteristic point of the kth order of C relative to $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{2}$.
3. The characteristic curve of S. Let us consider the section C_{π} of the surface S by a plane π through the R-conjugate line l_{1}. Let π intersect the R-harmonic line l_{2} in O_{π}. The local coordinates of O_{π} are of the form ($0, \lambda, \mu, 0$), and the local coordinates of any point Q_{1} on $O_{1} O_{\pi}$ are $(1, \lambda \xi, \mu \xi, 0)$. The equation of C_{π} referred to $O_{1} O_{\pi} O_{4}$ in nonhomogeneous coordinates (ξ, z) is

$$
\begin{equation*}
z=\lambda \mu \xi^{2}-\frac{1}{3}\left(\beta \lambda^{3}+\gamma \mu^{3}\right) \xi^{3}+\frac{1}{12} F_{4}(\lambda, \mu) \xi^{4}+\cdots \tag{3.1}
\end{equation*}
$$

From (2.2) the characteristic point T_{π} of C_{π} relative to $O_{1} O_{4} O_{\pi}$ has coordinates

$$
\begin{equation*}
\xi=3 \lambda \mu /\left(\beta \lambda^{3}+\gamma \mu^{3}\right), \quad z=0 \tag{3.2}
\end{equation*}
$$

referred to $O_{1} O_{\pi} O_{4}$, and coordinates

$$
\begin{equation*}
x=3 \lambda^{2} \mu /\left(\beta \lambda^{3}+\gamma \mu^{3}\right), \quad y=3 \lambda \mu^{2}\left(\beta \lambda^{3}+\gamma \mu^{3}\right), \quad z=0 \tag{3.3}
\end{equation*}
$$

referred to $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$. The locus of T_{π} as π rotates about l_{1} is the covariant rational cubic curve Γ_{3} whose equation is

$$
\begin{equation*}
3 x y-\left(\beta x^{3}+\gamma y^{3}\right)=0, \quad z=0 \tag{3.4}
\end{equation*}
$$

We shall call this cubic the characteristic curve of S relative to l_{1}, l_{2}. The nodal tangents of Γ_{3} are of course the asymptotic tangents of S at O_{1}, and the inflexions lie on the tangents of Darboux. The R-harmonic line
is the flex-ray of Γ_{3}.
From (3.3) it follows that the only sections of S through the R-conjugate line whose characteristic points relative to $\mathrm{O}_{1} \mathrm{O}_{4} \mathrm{O}_{\pi}$ lie on the R-harmonic line are those through the tangents of Darboux.

Another characterization of the cubic Γ_{3} may be found in the following manner. The osculating conic of the section C_{π} has the equation [4]

$$
\begin{align*}
\lambda^{3} \mu^{3}\left(z-\lambda \mu \xi^{2}\right)+\frac{1}{3} & \lambda^{2} \mu^{2}\left(\beta \lambda^{3}+\gamma \mu^{3}\right) \xi z \\
& +\left[\frac{1}{9}\left(\beta \lambda^{3}+\gamma \mu^{3}\right)^{2}-\frac{1}{12} F_{4}(\lambda, \mu)\right] z^{2}=0 \tag{3.5}
\end{align*}
$$

The pole of R-conjugate line with respect to this conic is the point T_{π}^{\prime} with coordinates

$$
\xi=-3 \lambda \mu /\left(\beta \lambda^{3}+\gamma \mu^{3}\right), \quad z=0
$$

The harmonic conjugate of T_{π}^{\prime} with respect to $O_{1} O_{\pi}$ is the point T_{π} defined by (3.2). Incidentally the locus of T_{π}^{\prime} is the cubic Γ_{3}^{\prime},

$$
3 x y+\beta x^{3}+\gamma y^{3}=0
$$

The tangents of Darboux are thus again exhibited by means of Γ_{3}^{\prime}.
Finally we may readily show that the polar line of the conic (3.5) intersects $O_{4} O_{\pi}$ in a point whose locus as π varies is a rational curve of order seven which intersects the R-harmonic line at its intersections with the tangents of Darboux.
4. The edges of Green. The expansions [4] of the two branches of the curve of intersection of S at O_{1} with its tangent plane are

$$
\begin{align*}
& y=\frac{1}{3} \beta x^{2}-\frac{1}{12}\left(2 \beta \theta_{u}-\beta_{u}\right)^{3}+\cdots, z=0 \\
& x=\frac{1}{3} \gamma y^{2}-\frac{1}{12}\left(2 \gamma \theta_{v}-\gamma_{v}\right)^{3}+\cdots, z=0 . \tag{4.1}
\end{align*}
$$

The characteristic point T_{u} of the first of (4.1) relative to $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{2}$ has coordinates

$$
\begin{equation*}
x_{1}=\frac{1}{4}\left(2 \theta_{u}-\frac{\beta_{u}}{\beta}\right), \quad x_{2}=1, \quad x_{3}=x_{4}=0 \tag{4.2}
\end{equation*}
$$

and the characteristic point T_{v} of the second relative to $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ has coordinates

$$
\begin{equation*}
x_{1}=\frac{1}{4}\left(2 \theta_{v}-\frac{\gamma_{v}}{\gamma}\right), \quad x_{2}=0, \quad x_{3}=1, \quad x_{4}=0 \tag{4.3}
\end{equation*}
$$

The line joining the harmonic conjugates of T_{u} and T_{v} with respect to $O_{1} O_{2}$ and $O_{1} O_{3}$ respectively is Green's edge of the second kind.

This edge of Green may be characterized in another way. The section of S by the plane through the R-conjugate line and the tangent to the asymptotic curve $v=$ const. has the equation

$$
\begin{equation*}
z=-\frac{1}{3} \beta x^{3}+\frac{1}{12}\left(2 \beta \theta_{u}-\beta_{u}\right) x^{4}+\cdots \tag{4.4}
\end{equation*}
$$

The characteristic point of the third order of the curve (4.4) relative to $\mathrm{O}_{1} \mathrm{O}_{4} \mathrm{O}_{2}$, is found from (2.5) to have coordinates given by (4.2); by interchanging the roles of the asymptotic tangents the point (4.3) is characterized. The second edge of Green is therefore given another characterization.

Consider on the tangent to the section (3.1) C_{π} of S the point $O_{\pi}^{\prime}(\rho, 2 \lambda, 2 \mu, 0)$. From (2.4) we find readily that the characteristic point T of C_{π} relative to $O_{1} O_{4} O_{\pi}^{\prime}$ has coordinates

$$
\begin{equation*}
x_{1}=\rho \lambda \mu+\frac{1}{3}\left(\beta \lambda^{3}+\gamma \mu^{3}\right), \quad x_{2}=\lambda^{2} \mu, \quad x_{3}=\lambda \mu^{2}, \quad x_{4}=0 \tag{4.5}
\end{equation*}
$$

The point P_{π} on the tangent to C_{π} at O_{1} which with O_{1} separates O_{π}^{\prime} and O_{π} harmonically has coordinates ($\rho, \lambda, \mu, 0$). Equations (4.4) therefore represent a cubic transformation of P_{π} into the characteristic point of C_{π} relative to $O_{1} O_{4} O_{\pi}^{\prime}$. The polar plane of the point (4.5) with respect to any quadric of Darboux,

$$
x_{2} x_{3}-x_{1} x_{4}+k_{4} x_{4}^{2}=0
$$

has coordinates

$$
\begin{equation*}
\xi_{1}=0, \quad \xi_{2}=\lambda \mu^{2}, \quad \xi_{3}=\lambda^{2} \mu, \quad \xi_{4}=-\rho \lambda \mu-\frac{1}{3}\left(\beta \lambda^{3}+\gamma \mu^{3}\right) \tag{4.6}
\end{equation*}
$$

The correspondence (4.6) between P_{π} and the polar plane of the characteristic point of C_{π} relative to $O_{1} O_{4} O_{\pi}^{\prime}$ is the correspondence of Moutard ($k=-1 / 3$). We have previously [3] given a different derivation of this correspondence.
5. The projective normal. The surface S^{\prime} whose equation is

$$
\begin{equation*}
z=x y-\frac{1}{3}\left(\beta x^{3}+\gamma y^{3}\right) \tag{5.1}
\end{equation*}
$$

has a unode at O_{4}, the plane $\mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$ as uniplane, and has contact of the third order with S at O_{1}; hence S^{\prime} is completely determined. The projection on their common tangent plane at O_{1} of the curve of intersection of S and S^{\prime} has a quadruple point at O_{1}, the quadruple tangents being given by

$$
\begin{equation*}
F_{4}(x, y)=0 \tag{5.2}
\end{equation*}
$$

where $F_{4}(x, y)$ is defined by (1.3). The lines (5.2) intersect the R-harmonic line in four points F_{i}, and the Segre tangents intersect this line in three points S_{i}. It is easy to verify that the points S_{i} are apolar to F_{i} if and only if the R-harmonic line is the reciprocal of the projective normal. The projective normal is therefore geometrically determined by reciprocation with respect to the quadrics of Darboux.

Finally let the lines l_{1}, l_{2} be the projective normal and its reciprocal; then it readily follows that the polar of the form $\beta x^{3}+\gamma y^{3}$ with respect to $F_{4}(x, y)$ is

```
\phix-\psiy
```

wherein $\phi=\partial \log \left(\beta \gamma^{2}\right) / \partial u, \psi=\partial \log \left(\beta^{2} \gamma\right) / \partial v$. The form (5.3) equated to zero is seen to be the equation of the canonical tangent.

References

1. N. Abramescu, Sur les tangentes de Darboux d'une surface, Annales Scientifiques Universitatea Jassey, Section I vol. 27 (1941) pp. 283-288.
2. V. G. Grove, On canonical forms of differential equations, Bull. Amer. Math. Soc. vol. 36 (1930) pp. 582-586.
3. -, The transformation of Cech, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 231-234.
4. E. P. Lane, A treatise on projective differential geometry, The University of Chicago Press, 1942.

Michigan State College

[^0]: Presented to the Society, April 26, 1947; received by the editors April 11, 1947.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

