EXTENSIONS OF DIFFERENTIAL FIELDS. III

E. R. KOLCHIN

The purpose of the present note is to show how the point of view of a preceding paper¹ can be used in developing the concepts of resolvent, dimension, and order introduced by J. F. Ritt in his theory of algebraic differential equations.² The present development, in addition to being simpler in some instances, has the advantage of being valid for abstract differential fields as opposed to fields of meromorphic functions of a complex variable, as used by Ritt. I shall also take the opportunity to correct mistakes in a related paper.³ The notation and definitions used will be as in Extensions I and II.

1. Resolvents, dimension, and order. Let \mathcal{J} be a differential field (ordinary or partial) of characteristic 0, and let y_1, \dots, y_n be unknowns. If Π is a prime differential ideal in $\mathcal{J}\{y_1, \dots, y_n\}$ other than $\mathcal{J}\{y_1, \dots, y_n\}$ itself then Π has a generic solution η_1, \dots, η_n .

If the degree of differential transcendency of $\mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle$ over \mathcal{J} is q then $0 \leq q < n$, and precisely q of the elements η_1, \cdots, η_n are differentially algebraically independent over \mathcal{J} . Suppose, say, that $\eta_1 \cdots, \eta_q$ are independent in this way, that is, that Π does not contain a nonzero differential polynomial in y_1, \cdots, y_q , but does in y_1, \cdots, y_q , y_j for each j > q. In Ritt's terminology $y_1 \cdots, y_q$ is a complete set of arbitrary unknowns for Π . It is natural to call q the *dimension* of Π (in symbols, dim Π).

Suppose henceforth that \mathcal{J} is ordinary. It is easy to see that the degree of transcendency of $\mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle$ over $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ (both these differential fields being considered as fields) is finite. We denote the degree of transcendency of any field \mathcal{K} over a subfield \mathcal{G} by $\partial^0 \mathcal{K}/\mathcal{G}$. It will be seen that it is natural to call the integer $\partial^0 \mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle/\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ the *order* of Π with respect to y_1, \cdots, y_q (when the set of arbitrary unknowns is understood, for example when q=0, we use the notation: ord Π).

Presented to the Society, November 2, 1946; received by the editors October 10, 1946.

¹ Kolchin, *Extensions of differential fields*, I, Ann. of Math. vol. 43 (1942) pp. 724–729. We shall refer to this paper as *Extensions* I.

² The subject matter treated here, together with some of the material from *Extensions* I, is roughly parallel to the contents of §§24-31, 75 of Ritt, *Differential equations from the algebraic standpoint*, Amer. Math. Soc. Colloquium Publications, vol. 14, New York, 1932.

⁸ Kolchin, *Extensions of differential fields*, II, Ann. of Math. vol. 45 (1944) pp. 358-361. We shall refer to this paper as *Extensions* II. If $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ contains a nonconstant (which is the case either when \mathcal{J} does or when q > 0) then by Extensions I there is an ω such that $\mathcal{J}\langle\eta_1, \cdots, \eta_q, \omega\rangle = \mathcal{J}\langle\eta_1, \cdots, \eta_n\rangle$. Let $A = A(\eta_1, \cdots, \eta_q, w)$ be an irreducible differential polynomial in $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle\{w\}$, with solution $w = \omega$, of lowest possible order. Since ω and its first ord II derivatives must be algebraically dependent over $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$, the order of A is not greater than ord II. On the other hand, if the order of A is p then the pth derivative (and consequently all the derivatives) of ω is algebraically dependent over $\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ on ω and its first p-1 derivatives, so that ord $\Pi = \partial^0 \mathcal{J}\langle\eta_1 \cdots, \eta_n\rangle/\mathcal{J}\langle\eta_1, \cdots, \eta_q\rangle$ $= \partial^0 \mathcal{J}\langle\eta_1, \cdots, \eta_q, \omega\rangle/\mathcal{J}\langle\eta_1, \cdots, \eta_q, \omega\rangle$ is called a *resolvent* of Π . (Actually, this is a slight generalization of Ritt's resolvent, which must be in $\mathcal{J}\{y_1, \cdots, y_q, w\}$ instead of merely in $\mathcal{J}\langle y_1, \cdots, y_q \rangle\{w\}$.)

Let G be a differential extension field of \mathcal{F} , let $\{\Pi\} = \Pi_1 \cap \cdots \cap \Pi_r$ be the decomposition into prime components (that is, prime differential ideals none of which contains another) of the perfect differential ideal generated by Π in $G\{y_1, \cdots, y_n\}$, and let $A_1(y_1, \cdots, y_q, w) \cdots A_s(y_1, \cdots, y_q, w)$ be the complete factorization of $A(y_1, \cdots, y_q, w)$ in $G\langle y_1, \cdots, y_q \rangle \{w\}$. Each $A_i(y_1, \cdots, y_q, w)$ is of order p in w, for a factor of $A(y_1, \cdots, y_q, w)$ of order less than p would be a common factor of the coefficients in $A(y_1, \cdots, y_q, w)$ when $A(y_1, \cdots, y_q, w)$ is considered as a polynomial in w_p , the pth derivative of w. We shall now establish Ritt's result that r = s and each $A_i(y_1, \cdots, y_q, w)$ is a resolvent of one Π_i . This result implies that Π decomposes if and only if $A(y_1, \cdots, y_q, w)$ factors, and that each prime component in the decomposition has the same order as Π has.

Let η'_1, \dots, η'_n be a generic solution of Π_1 . Then (by *Extensions* I, §1) η'_1, \dots, η'_n is a generic solution of Π , so that $\eta'_1 \rightarrow \eta_1, \dots, \eta'_n \rightarrow \eta_n$ generates an isomorphism of $\mathcal{J}\langle \eta'_1, \dots, \eta'_n \rangle$ onto $\mathcal{J}\langle \eta_1, \dots, \eta_n \rangle$. Therefore if we let ω' be the same differential rational function over \mathcal{J} of η'_1, \dots, η'_n that ω is of η_1, \dots, η_n , we shall have

$$\mathcal{J}\langle \eta_1', \cdots, \eta_q', \omega' \rangle = \mathcal{J}\langle \eta_1', \cdots, \eta_n' \rangle.$$

Now ω' is a solution of $A' = A(\eta'_1, \dots, \eta'_q, w)$, and therefore of some $A'_i = A_i(\eta'_1, \dots, \eta'_q, w)$, say of A'_1 . Furthermore, ω' is not a solution of two different A'_1 's, for ω' does not annul the separant $\partial A'/\partial w_p = \partial (A'_1 \dots A'_s)/\partial w_p$. Let ω'' be a generic solution of the prime component of $\{A'_1\}$ in $G\langle \eta'_1, \dots, \eta'_q \rangle \{w\}$ not containing the separant $\partial A'_1/\partial w_p$. Then ω'' is a generic solution of the prime component of $\{A'_i\}$ in $\mathcal{J}\langle \eta'_1, \dots, \eta'_q \rangle \{w\}$ not containing the separant $\partial A'/\partial w_p$, so that $\omega'' \rightarrow \omega'$ generates an isomorphism of $\mathcal{J}\langle \eta'_1, \cdots, \eta'_q, \omega'' \rangle$ onto $\mathcal{J}\langle \eta'_1, \cdots, \eta'_q, \omega' \rangle$, and a homomorphism of $\mathcal{G}\langle \eta'_1, \cdots, \eta'_q \rangle \{\omega''\}$ onto $\mathcal{G}\langle \eta'_1, \cdots, \eta'_q \rangle \{\omega'\}$. Therefore, if for each i > q we let η'_i be the same differential rational function over $\mathcal{J}\langle \eta'_1, \cdots, \eta'_q \rangle$ of ω'' as η'_i is of ω' , then η'_1, \cdots, η'_q , $\eta''_{q+1}, \cdots, \eta''_n$ is a generic solution of Π and a solution of some Π_i . Since η'_1, \cdots, η'_n must be a solution of the same Π_i , and since one Π_i does not contain another, $\eta'_1, \cdots, \eta'_q, \eta''_{q+1}, \cdots, \eta''_n$ is a solution of Π_1 , and indeed a generic one.

Therefore $\eta_{q+1}' \rightarrow \eta_{q+1}', \cdots, \eta_n'' \rightarrow \eta_n'$ generates an isomorphism of $G\langle \eta_1', \cdots, \eta_q', \eta_{q+1}', \cdots, \eta_n'' \rangle$ onto $G\langle \eta_1', \cdots, \eta_n' \rangle$, A_1' is an irreducible differential polynomial in $G\langle \eta_1', \cdots, \eta_q' \rangle \{w\}$, with solution $w = \omega'$, of minimal degree, and $A_1(y_1, \cdots, y_q, w)$ is a resolvent of Π_1 . In the same way, every Π_i has an $A_j(y_1, \cdots, y_q, w)$ as a resolvent, so that $r \leq s$. To show that there is no $A_j(y_1, \cdots, y_q, w)$ left over, for any j let ω_j be a generic solution of the prime component of $\{A_j'\}$ in $G\langle \eta_1', \cdots, \eta_n' \rangle \{w\}$ not containing $\partial A_j' / \partial w_p$. For each i > q let η_{ji} be the same differential rational function over $\mathcal{J}\langle \eta_1', \cdots, \eta_q' \rangle$ of ω_j as η_i' is of ω' . Then $\eta_1', \cdots, \eta_q', \eta_{j,q+1}, \cdots, \eta_{jn}$ is a generic solution of the A_k' for which $A_k(y_1, \cdots, y_q, w)$ is a resolvent of Π_{i_0} . This implies that $A_k(y_1, \cdots, y_q, w)$ is divisible by $A_j(y_1, \cdots, y_q, w)$, so that k = j and $A_j(y_1, \cdots, y_q, w)$ is a resolvent of a Π_i .

If q=0 and \mathcal{F} consists solely of constants it is still true that each prime component of $\{\Pi\}$ has the same order as II. To see this introduce a new unknown u and let $\mathcal{F}' = \mathcal{F}\langle u \rangle$, $\mathcal{G}' = \mathcal{G}\langle u \rangle$. The perfect differential ideal generated by II in $\mathcal{F}'\{y_1, \dots, y_n\}$ is clearly prime and has the same order as II has. The prime components of the perfect differential ideal generated by II in $\mathcal{G}'\{y_1, \dots, y_n\}$ are the perfect differential ideals generated by II in $\mathcal{G}'\{y_1, \dots, y_n\}$ are the perfect differential ideals generated by Π_1, \dots, Π_r , and have the same order. Therefore ord $\Pi_i = \text{ord } \Pi$ for each i.

2. Corrections to Extensions II. We refer now to the proof on page 359 of *Extensions* II. The derivation of the equation $\omega K(z) - H(z) = \alpha A(z)$ is incorrect, for it rests on the unjustified assumption (see lines 18 and 17 from the bottom) that $\partial A(z)/\partial y_p \in G\{z\}$. To save the proof we delete in toto lines 22-4 from the bottom ("Denote the $\cdots A(z)$:"), and replace them by the following considerations.

Let $\omega = H(y)/K(y)$ be any coefficient in A(z) not merely an element of \mathcal{J} , with H(y), K(y) free of common divisor. Clearly $\omega K(z) - H(z) \in \Sigma$.

1947]

Denote the lowest common denominator of the coefficients in A(z) by D(y), and let B(y, z) = D(y)A(z). Then $B(y, z) \in \mathcal{F}\{y, z\}$, and B(y, y) = 0. Since A(z) is irreducible and one of the coefficients in A(z) is unity, the irreducible factors of B(y, z) are distinct and all have the same order in z as A(z) has.

Denoting the order of B(y, z) in y by p, let $B_1(y, z)$ be an irreducible factor of B(y, z) of order p in y. Let Λ_1 be the prime component of $\{B_1(y, z)\}$ which contains neither of the separants of $B_1(y, z)$. No other irreducible factor of B(y, z) is in Λ_1 , for such a factor would have the same order in z as $B_1(y, z)$ and would be divisible by $B_1(y, z)$. Let y, ζ_1 be a generic solution of Λ_1 . $B(y, z) \in \Lambda_1$ but the separant of B(y, z) with respect to z is not in Λ_1 (for otherwise the separant of $B_1(y, z)$ would be in Λ_1). Therefore ζ_1 is a nonsingular solution of A(z), a solution of Σ , and a solution of $\omega K(z) - H(z)$. Thus H(y)K(z)-K(y)H(z) vanishes for the generic solution y, ζ_1 of Λ_1 , and is in Λ_1 . With order in y clearly not greater than p, H(y)K(z) - K(y)H(z) must be divisible by $B_1(y, z)$.

Similarly, H(y)K(z) - K(y)H(z) is divisible by all the irreducible factors $B_1(y, z), \dots, B_s(y, z)$ of B(y, z) which have order p in y. Since all these $B_i(y, z)$'s are distinct we may write

$$H(y)K(z) - K(y)H(z) = L(y, z)B_1(y, z) \cdots B_s(y, z),$$

where $L(y, z) \in \mathcal{J}\{y, z\}$. Moreover, if we denote the degree of B(y, z)in y_p (the *p*th derivative of y) by d, we see that the degree of H(y)K(z) - K(y)H(z) in y_p is not greater than d, that of $B_1(y, z)$ $\cdots B_s(y, z)$ is d, so that L(y, z) is of degree 0 in y_p , that is, of order not greater than p-1 in y.

Let $B_{s+1}(y, z)$ be an irreducible factor of B(y, z) of order p-1 in y, let Λ_{s+1} be the prime component of $\{B_{s+1}(y, z)\}$ not containing the separants of $B_{s+1}(y, z)$, and let y, ζ_{s+1} be a generic solution of Λ_{s+1} . As with y, ζ_1 before, we see that y, ζ_{s+1} is a solution of H(y)K(z)-K(y)H(z). But y, ζ_{s+1} is not a solution of any $B_i(y, z)$ with $i \leq s$, for no such $B_i(y, z)$ is in Λ_{s+1} . Hence y, ζ_{s+1} is a solution of L(y, z), and $L(y, z) \in \Lambda_{s+1}$. This implies, since the order of L(y, z) in y is not greater than p-1, that L(y, z) is divisible by $B_{s+1}(y, z)$.

Similarly, L(y, z) is divisible by all the irreducible factors $B_{s+1}(y, z)$, ..., $B_t(y, z)$ of order p-1 in y, so that

$$H(y)K(z) - K(y)H(z) = M(y, z)B_1(y, z) \cdots B_t(y, z),$$

where $M(y, z) \in \mathcal{F}\{y, z\}$. Moreover, if we denote the degree of B(y, z) in y_p , y_{p-1} by e, we see that the degree of H(y)K(z) - K(y)H(z) in y_p , y_{p-1} is not greater than e, that of $B_1(y, z) \cdots B_i(y, z)$ is e,

400

so that M(y, z) is of degree 0 in y_p , y_{p-1} , that is, of order not greater than p-2 in y.

Continuing in this way we finally arrive at an equation

$$H(y)K(z) - K(y)H(z) = P(z)B_1(y, z) \cdots B_w(y, z),$$

where $B_1(y, z), \dots, B_w(y, z)$ are all the irreducible factors of B(y, z). Since H(z), K(z) have no common divisor, H(y)K(z) - K(y)H(z) has no factor free of y that is not also free of z. Therefore $P(z) \in \mathcal{J}$, and H(y)K(z) - K(y)H(z) = aB(y, z), where $a \in \mathcal{I}$. The desired equation $\omega K(z) - H(z) = \alpha A(z)$ immediately follows.

The rest of the proof of the theorem as given in Extensions II is apparently correct.

Of the two examples given in Extensions II, the proof for Example 2 is incorrect, and I do not yet know whether that example is valid.

COLUMBIA UNIVERSITY

1947]