A NOTE ON THE MEAN VALUE OF THE POISSON KERNEL

A. S. GALBRAITH AND J. W. GREEN

In some investigations it is necessary to evaluate the mean value of some power of the Poisson kernel,

$$P(r,\theta) \equiv (1-r^2)/(1-2r\cos\theta+r^2),$$

with respect to θ . This note gives a closed expression for this mean value, and an exact statement of the order of growth as r approaches 1.

THEOREM 1. If
$$x = 2r/(1+r^2)$$
, then

(1)
$$\frac{1}{2\pi} \int_{0}^{2\pi} P^{n+1}(r,\theta) d\theta = \left(\frac{1-r^2}{1+r^2}\right)^{n+1} \cdot \frac{1}{\Gamma(n+1)} \\ \cdot \frac{d^n}{dx^n} \left(\frac{x^n}{(1-x^2)^{1/2}}\right), \qquad n > -1.$$

If n is not an integer the derivative is to be computed by the formula of Riemann and Liouville¹

(2)
$$\frac{d^n}{dx^n}(f(x)) = \frac{d^m}{dx^m} \frac{1}{\Gamma(\rho)} \int_0^x (x-t)^{\rho-1} f(t) dt,$$

where m is the smallest integer not less than n and $\rho = m - n$.

The proof consists merely of the comparison of two power series. Clearly

$$P^{n+1}(r,\theta) = \left(\frac{1-r^2}{1+r^2}\right)^{n+1} \left(1-\frac{2r}{1+r^2}\cos\theta\right)^{-(n+1)},$$

and the second parenthesis, with $x = 2r/(1+r^2)$, is $1+(n+1)x \cos \theta + (n+1)(n+2)/2!x^2 \cos^2 \theta + \cdots$ by the binomial theorem. Since

$$\int_{0}^{2\pi} \cos^{p} \theta d\theta = 0 \qquad (\text{if } p \text{ is an odd integer})$$
$$= \frac{4(p-1)(p-3)\cdots 3\cdot 1}{p} \cdot \frac{\pi}{p} \text{ (if } p \text{ is even})$$

$$= \frac{p(p-2)\cdots 4\cdot 2}{p(p-2)\cdots 4\cdot 2} \cdot \frac{p(p-2)\cdots p(p-2)}{2}$$
 (if p is evolved)

Received by the editors October 28, 1946.

¹ See, for example, Courant, *Differential and integral calculus*, rev. ed., vol. 2, pp. 339–340.

equation (1) can be written

$$\frac{1}{2\pi} \int_{0}^{2\pi} P^{n+1}(r, \theta) d\theta$$

$$= \left(\frac{1-r^{2}}{1+r^{2}}\right)^{n+1} \left[1 + \frac{(n+1)(n+2)}{2!} \cdot x^{2} \cdot \frac{1}{2} + \frac{(n+1)(n+2)(n+3)(n+4)}{4!} \cdot x^{4} \cdot \frac{1 \cdot 3}{2 \cdot 4} + \cdots\right]$$
(3)
$$= \left(\frac{1-r^{2}}{1+r^{2}}\right)^{n+1} \left[1 + \sum_{k=1}^{\infty} \frac{(n+1)(n+2)\cdots(n+2k)}{(2k)!} + \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^{k} \cdot k!} \cdot x^{2k}\right].$$

Now

(4)
$$x^{n}(1-x^{2})^{-1/2} = x^{n} + \frac{1}{2}x^{n+2} + \frac{1\cdot 3}{2^{2}\cdot 2!}x^{n+4} + \frac{1\cdot 3\cdot 5}{2^{3}\cdot 3!}x^{n+6} + \cdots$$

If n is an integer, this can be differentiated n times to yield

$$n! + \frac{(n+2)!}{2!} \cdot \frac{1}{2} \cdot x^2 + \frac{(n+4)!}{4!} \cdot \frac{1 \cdot 3}{2^2 \cdot 2!} x^4 + \frac{(n+6)!}{6!} \cdot \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!} x^6 + \cdots$$

Division by $\Gamma(n+1)$, as required in (1), produces the power series of (3).

If n is not an integer, formula (2) is applied to (4) to yield, on the right, a series of terms containing integrals of the form

$$\frac{1}{\Gamma(\rho)}\int_0^x (x-t)^{\rho-1}t^{n+2p}dt, \qquad p=0, \, 1, \, 2, \, \cdots.$$

The substitution t = xu changes these to

$$\frac{x^{n+2p+\rho}}{\Gamma(\rho)} \int_0^1 (1-u)^{\rho-1} u^{n+2p} du = \frac{x^{m+2p}}{\Gamma(\rho)} \cdot B(\rho, n+1+2p)$$
$$= \frac{x^{m+2p} \Gamma(n+2p+1)}{\Gamma(n+2p+1+\rho)},$$

[April

and the *m*th derivative of one of these terms is

$$\frac{(m+2p)!x^{2p}\Gamma(n+2p+1)}{(2p)!\Gamma(n+2p+1+\rho)}$$

Hence the right member of (4) becomes

$$\frac{m!\Gamma(n+1)}{\Gamma(n+1+\rho)} + \frac{1}{2} \cdot \frac{(m+2)!\Gamma(n+3)}{2!\Gamma(n+3+\rho)} x^2 + \frac{1\cdot 3}{2^2 \cdot 2!} \cdot \frac{(m+4)!\Gamma(n+5)}{4!\Gamma(n+5+\rho)} x^4 + \cdots$$

Since $n + \rho = m$, this reduces to

$$\Gamma(n+1)\left[1+\frac{1}{2}\cdot\frac{(n+1)(n+2)}{2!}x^2+\frac{1\cdot 3}{2^2\cdot 2!}\cdot\frac{(n+1)(n+2)(n+3)(n+4)}{4!}x^4+\cdots\right],$$

the desired series.

The integration term by term is justified, since $(x-t)^{\rho-1}$ is integrable and the series which it multiplies is uniformly convergent.

The order of growth of this mean value, as r approaches 1, is specified by the following theorem.

THEOREM 2.

(5)
$$\lim_{r \to 1^{-}} \frac{(1-r)^n}{2\pi} \int_0^{2\pi} P^{n+1}(r,\theta) d\theta \\ = \frac{(2m)!\Gamma(n+1/2)}{m!2^m\Gamma(n+1)\Gamma(n+1/2+\rho)}, \qquad n > -1/2,$$

where m, n and ρ are related as in Theorem 1.

If n is an integer the right member reduces to $(2n)!/(n!)^22^n$.

PROOF. Since $(1-r^2)^2/(1+r^2)^2 = 1-x^2$, where x has the same meaning as in Theorem 1, and since $(1+r)/(1+r^2)$ will approach unity, it is convenient to replace $(1-r)^n$ by $(1-x^2)^{n/2}$, and prove that the right member of (5) is equal to

(6)
$$\lim_{x\to 1^{-}} (1-x^2)^{n/2} (1-x^2)^{(n+1)/2} \frac{1}{\Gamma(n+1)} \cdot \frac{d^n}{dx^n} (x^n(1-x^2)^{-1/2}).$$

If n=0, this is obviously true. If n is a positive integer, let

 $\phi(x) = (1 - x^2)^{-1/2}$, and consider the derivatives of $x^n \phi(x)$.

$$\frac{d(x^n\phi(x))}{dx} = \frac{x^{n+1}\phi^3(x) + nx^{n-1}\phi(x)}{n^2(x^n\phi(x))};$$

$$\frac{d^2(x^n\phi(x))}{dx^2} = \frac{3x^{n+2}\phi^5(x)}{n^2} + \text{ terms in lower powers of } \phi(x);$$

and by mathematical induction it can readily be shown that

$$\frac{d^{n}(x^{n}\phi(x))}{dx^{n}} = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)x^{2n}\phi^{2n+1}(x)$$

+ terms in $\phi^{2n-1}, \phi^{2n-3}, \cdots, \phi$.

Since

$$\lim_{x \to 1^{-}} (1 - x^2)^{n+1/2} \phi^p(x) \begin{cases} = 0, \qquad p = 1, 3, 5, \cdots, 2n - 1, \\ = 1, \qquad p = 2n + 1, \end{cases}$$

the limit in (6) is

$$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{\Gamma(n+1)} = \frac{(2n)!}{2^n (n!)^2},$$

as required in the theorem.

If n is not an integer,¹

$$\frac{d^n}{dx^n}(x^n\phi(x)) = \frac{d^m}{dx^m} \frac{1}{\Gamma(\rho)} \int_0^x (x-t)^{\rho-1} t^n (1-t^2)^{-1/2} dt$$
$$= \frac{1}{\Gamma(\rho)} \int_0^x (x-t)^{\rho-1} \frac{d^m}{dt^m} (t^n\phi(t)) dt.$$

As before, it is necessary to consider only the first term of the derivative, $1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2m-1)x^{m+n}\phi^{2m+1}(x)$, since

$$(1 - x^2)^{n+1/2} \int_0^x (x - t)^{\rho - 1} t^{m+n-2} \phi^{2m-1}(t) dt$$

$$< (1 - x^2)^{n+1/2} \int_0^x \frac{(x - t)^{\rho - 1} dt}{(1 - x^2)^{m-1/2}}$$

$$= (1 - x^2)^{1-\rho} \int_0^x (x - t)^{\rho - 1} dt,$$

and this approaches zero. Consequently it is necessary to consider

$$\lim_{x\to 1^{-}} (1-x^2)^{n+1/2} \int_0^x (x-t)^{\rho-1} t^{m+n} \phi^{2m+1}(t) dt.$$

This limit, multiplied by

1947]

(7)
$$\frac{1\cdot 3\cdot 5\cdot \cdot \cdot (2m-1)}{\Gamma(\rho)\Gamma(n+1)},$$

is the result sought.

The substitution t = x - (1 - x)u reduces the integral to

(8)
$$\frac{x^{2m-\rho}(1-x^2)^{n+1/2+\rho}}{(1+x)^{\rho}(1-x^2)^{m+1/2}} \cdot \int_{0}^{x/(1-x)} \frac{u^{\rho-1}(1-(1-x)u/x)^{2m-\rho}du}{(1+u)^{m+1/2}(1-(1-x)u/(1+x))^{m+1/2}}.$$

Since $n + \rho = m$, and x is to approach 1 later, the factor outside the integral sign will have the limit $2^{-\rho}$. To evaluate the integral, let a be a number between 0 and 1 (the way to choose a will become clear later; a will depend on n but not on x), and consider

(9)
$$\int_{ax/(1-x)}^{x/(1-x)} (\text{same integrand as in (8)}) \ du.$$

In the interval of integration, $u \ge ax/(1-x)$, $1+u \ge (1-x(1-a))/(1-x)$, and $1-(1-x)u/(1+x) \ge 1/(1+x)$. Hence the integral in (9) is less than

$$((1-x)/ax)^{1-\rho}(1+x)^{m+1/2} \{(1-x)/(1-x(1-a))\}^{m+1/2} \\ \cdot \int_{ax/(1-x)}^{x/(1-x)} (1-(1-x)u/x)^{2m-\rho} du.$$

Except for a bounded factor this is $(1-x)^{m+3/2-\rho}x(1-a)^{2m+1-\rho}/(1-x)$, and accordingly approaches zero as x approaches 1; if n is negative, m is zero, and $n = -\rho > -1/2$.

Therefore the desired limit can be found by replacing the upper limit of integration in (8) by ax/(1-x). This new integral will be not less than

(10)
$$\int_0^{ax/(1-x)} \frac{u^{\rho-1}(1-a)^{2m-\rho}}{(1+u)^{m+1/2}} du.$$

As x approaches 1 this has the limit $(1-a)^{2m-\rho}B(\rho, m-\rho+1/2)$. Also, the new integral will not be greater than

(11)
$$\int_{0}^{ax/(1-x)} \frac{u^{\rho-1}du}{(1+u)^{m+1/2}(1-ax/(1+x))^{m+1/2}} = \left(\frac{1+x}{1+x(1-a)}\right)^{m+1/2} \int_{0}^{ax/(1-x)} \frac{u^{\rho-1}du}{(1+u)^{m+1/2}},$$

[April

318

which has the limit $2^{m+1/2}/(2-a)^{m+1/2}B(\rho, m-\rho+1/2)$. If *n* is negative, *m* is zero, and the factor $(1-a)^{2m-\rho}$ will appear in (11) instead of (10).

Since a can be taken as close to zero as is desired, it follows that the limit exists and is $B(\rho, m-\rho+1/2)$, or $B(\rho, n+1/2)$. If the factor (7) is annexed, the theorem follows.

The theorem cannot be extended to the case $-1 < n \leq -1/2$, for if n is replaced by $-\rho$,

$$\frac{(1-r)^n}{2\pi} \int_0^{2\pi} P^{n+1}(r,\theta) d\theta$$

= $\frac{(1-r)^{-\rho}}{2\pi} \left(\frac{1-r^2}{1+r^2}\right)^{1-\rho} \int_0^{2\pi} \frac{d\theta}{(1-x\cos\theta)^{1-\rho}}$

After a bounded factor is removed, the substitution $u = \cos \theta$ gives

$$(1-x)^{1/2-\rho}\int_{-1}^{+1}\frac{du}{(1-u^2)^{1/2}(1-xu)^{1-\rho}}$$
.

Since this integral converges at u = -1, it is necessary to consider only the interval from 0 to 1 to show divergence. The change of variable xu = t(1-x) yields

$$(1-x)^{1/2-\rho} \int_0^{x/(1-x)} \frac{dt(1-x)/x}{(1-(1-x)t/x)^{1/2}(1+(1-x)t/x)^{1/2}(1-t(1-x))^{1-\rho}},$$

which is greater than

$$\frac{(1-x)^{3/2-\rho}}{2^{1/2}}\int_0^{x/(1-x)}(1-(1-x)t/x)^{-1/2}dt=(1-x)^{1/2-\rho}2^{1/2}x.$$

Hence, if ρ is greater than 1/2, the integral diverges and no limit exists.

If n = -1/2, the theorem fails to hold, but the order of growth of the mean value can be found. Here m = 0, $\rho = 1/2$, and

$$\frac{(1-r)^n}{2\pi} \int_0^{2\pi} P^{n+1}(r,\theta) d\theta$$
$$= \frac{(1-r)^{-1/2}}{2\pi} \left(\frac{1-r^2}{1+r^2}\right)^{1-1/2} \int_0^{2\pi} (1-x\cos\theta)^{-1/2} d\theta.$$

The last integral can be written

$$\int_0^{2\pi} (1 - x + 2x \sin^2 \theta/2)^{-1/2} d\theta,$$

1947]

which is greater than

$$\int_0^{2\pi} (1 - x + 2 \sin^2 \theta/2)^{-1/2} d\theta.$$

If 1-x is set equal to $2\alpha^2$, the last integral is greater than

$$\frac{1}{2^{1/2}} \int_0^{2\pi} (\alpha^2 + \theta^2)^{-1/2} d\theta = \frac{1}{2^{1/2}} \log \left(2\pi + (4\pi^2 + \alpha^2)^{1/2} \right) / \alpha,$$

which becomes infinite as α approaches zero. Now $|\log \alpha|$ is effectively $|\log (1-x)|$ or $|\log (1-r)|$ multiplied by a constant. By an estimation similar to the foregoing, the integral can be shown to be less than $|\log (1-r)|$ multiplied by a second constant. Hence, if n = -1/2, the order of growth of the mean value is $(1-r)^{1/2} \log(1-r)|$.

COLBY COLLEGE AND

The University of California at Los Angeles