ON NÖRLUND SUMMABILITY OF RANDOM VARIABLES TO ZERO

GEORGE E. FORSYTHE

1. Introduction. In a previous paper ${ }^{1}$ [1], the author considered the Cesàro summability methods $\left\{\boldsymbol{C}_{r}\right\}(0<r<\infty)$ for sequences of independent, real-valued random variables $\left\{x_{k}\right\}$. For summability in probability of $\left\{\mathrm{x}_{k}\right\}$ to 0 , it was shown that: (i) $r<s$ implies $\boldsymbol{C}_{r} \subset C_{s}$; (ii) for $r \geqq 1$ all the methods \mathbf{C}_{r} are essentially equivalent, in contrast to the Cesàro theory for sequences of real numbers. The field of the investigation reported here is the summability in probability of sequences $\left\{x_{k}\right\}$ to 0 by the Nörlund summability methods, which include the Cesàro methods. The objective (attained only in special cases) was to prove that if two Nörlund methods N_{p} and N_{q} share the relation $N_{p} \subset N_{q}$ over sequences of real numbers, then the analogous relation $N_{p} \subset N_{q}$ holds for the summability of sequences of independent, real-valued, symmetric random variables to zero. The converse is, of course, false.

The only sequences $\left\{x_{k}\right\}$ considered here are normal families of independent, real-valued, symmetric random variables. For these $\left\{x_{k}\right\}$ the objective has been attained for three special cases; see Theorems 4,5 , and 6 . The earlier theorems are tools: Theorem 1 gives a necessary and sufficient condition for the Nörlund summability of $\left\{\mathrm{x}_{k}\right\}$ to 0 , while Theorems 2 and 3 give sufficient conditions for the relations $N_{p} \subset N_{q}$ and $N_{p} \equiv \boldsymbol{N}_{q}$, respectively. Theorem 7 shows that equivalence with \boldsymbol{C}_{1} over $\left\{\mathbf{x}_{k}\right\}$ extends to a Nörlund method \boldsymbol{N}_{p} whose counterpart N_{p} is strictly weaker than C_{1} over sequences of real numbers. Such equivalence with \boldsymbol{C}_{1} is impossible for Cesàro methods weaker than C_{1} over sequences of real numbers.

It is conjectured that Theorems 4,5 , and 6 , here proved for normal families only, can be extended without change of statement to arbitrary sequences of independent, real-valued, symmetric random variables. If the x_{k} are not symmetric there are complications (see [1]), but it is conjectured that Theorems 4,5 , and 6 still hold without essential change.
2. Nörlund summability of sequences of real numbers. Let $p=\left\{p_{n}\right\}$ ($n=0,1,2, \cdots$) be a sequence of nonnegative real numbers, with

[^0]$p_{0}=1$; for each n let $P_{n}=\sum_{0}^{n} p_{k}$. For any sequence $\left\{x_{k}\right\}$ of real numbers, a transformed sequence $\left\{y_{n}\right\}$ is defined by the relation $y_{n}=P_{n}^{-1} \sum_{k=0}^{n} p_{n-k} x_{k}(n=0,1,2, \cdots)$. If the sequence $\left\{y_{n}\right\}$ has the limit x^{\prime}, the sequence $\left\{\mathrm{x}_{k}\right\}$ is said to be summable $-N_{p}$ to x^{\prime}, where N_{p} is the Nörlund summability method corresponding to p. The method N_{p} is known to be regular (that is, consistent with ordinary convergence, for all convergent sequences $\left\{x_{k}\right\}$) if and only if $p_{n}=o\left(P_{n}\right)$. There is a substantial known theory of the Nörlund summability methods (see $[2,6,7,8,9]$), of which certain results will be quoted in this section for comparison with their analogues for sequences of random variables.

For two summability methods A and B, the statement " $A \subset B$ " means that any sequence summable- A to a finite limit is also sum-mable- B to the same limit. The statement " $A \equiv B$ " means that $A \subset B$ and $B \subset A$. The negation of " $A \subset B$ " is " $A \not \subset B$."

In addition to N_{p}, defined by $\left\{p_{k}\right\}$, let a second Nörlund summability method N_{q} be defined by $\left\{q_{k}\right\}$, with $q_{0}=1, q_{k} \geqq 0$, and $Q_{n}=\sum_{0}^{n} q_{k}$. The following generating functions and coefficients are defined formally by M. Riesz [7]:

$$
\begin{gathered}
p^{*}(x)=\sum_{n=0}^{\infty} p_{n} x^{n} ; \quad q^{*}(x)=\sum_{n=0}^{\infty} q_{n} x^{n} \\
\lambda^{*}(x)=\frac{q^{*}(x)}{p^{*}(x)}=\sum_{n=0}^{\infty} \lambda_{n}^{*} x^{n} \\
\mu^{*}(x)=\frac{p^{*}(x)}{q^{*}(x)}=\sum_{n=0}^{\infty} \mu_{n}^{*} x^{n} .
\end{gathered}
$$

It is assumed in (2-1) to (2-5) that N_{p} and N_{q} are both regular.
(2-1) (M. Riesz [7]) $N_{p} \subset N_{q}$ if and only if, as $n \rightarrow \infty$, both $\sum_{k=0}^{n} P_{k}\left|\lambda_{n-k}^{*}\right|=O\left(Q_{n}\right)$ and $\lambda_{n}{ }^{*}=o\left(Q_{n}\right)$.
(2-2) (M. Riesz [7]) $N_{p} \equiv N_{q}$ if and only if $\sum_{n=0}^{\infty}\left(\left|\lambda_{n}{ }^{*}\right|+\left|\mu_{n}^{*}\right|\right)<\infty$.
The Cesàro summability methods $C_{r}(0<r<\infty)$ are of the Nörlund type N_{p}, where $p^{*}(x)=(1-x)^{-r}$. If we let N_{p} be $C_{1},(2-2)$ takes the following form ([2], p. 782):
(2-3) $C_{1} \subset N_{q}$ if and only if, as $n \rightarrow \infty, \sum_{k=0}^{n}(n+1-k)\left|q_{k}-q_{k-1}\right|$ $=O\left(Q_{n}\right)$, where $q_{-1}=0$.

It follows immediately from (2-3) that:
(2-4) If $q_{n} \leqq q_{n+1}$ for all n, then $C_{1} \subset N_{q}$.

It follows from (2-1) that:
(2-5) If $p_{n} \geqq p_{n+1}$ for all n, then $N_{p} \subset C_{1}$.
The author has not seen (2-5) in the literature, but it is undoubtedly known. It can be proved much like the analogous Theorem 6 of the next section.
3. Nörlund summability of random variables to zero. Sections 3 and 4 of [1] contain the notation, basic definitions, and references for the summability in probability of a sequence $\left\{x_{k}\right\}$ to 0 . We shall here confine ourselves to sequences of independent, real-valued, symmetric random variables which form a normal family.

Definition 1 (P. Lévy [5]). $\left\{\mathrm{x}_{k}\right\}$ forms a normal family when both (3-1) and (3-2) hold:
(3-1) $E\left(x_{k}\right)=0$ and $E\left(x_{k}^{2}\right)=\sigma_{k}^{2}<\infty$, for all k;
(3-2) There exists a random variable x with finite $E\left(\mathrm{x}^{2}\right)$ such that for all $A>0$ and all k

$$
\operatorname{Prob}\left\{\left|\mathrm{x}_{k}\right|>A \sigma_{k}\right\} \leqq \operatorname{Prob}\{|\mathrm{x}|>A\} .
$$

(Lévy does not require that $E\left(x_{k}\right)=0$.)
Definition 2. With the notation of $\S 2$ above, a sequence $\left\{x_{k}\right\}$ is said to be summable $-\boldsymbol{N}_{p}$ in probability to 0 when for each $\epsilon>0$, as $n \rightarrow \infty$,

$$
\begin{equation*}
\text { Prob }\left\{\left|P_{n}^{-1} \sum_{k=0}^{n} p_{n-k} \mathrm{x}_{k}\right|>\epsilon\right\} \rightarrow 0 . \tag{3-3}
\end{equation*}
$$

The words "in probability" will sometimes be omitted for brevity.
The basic theorem is the following:
Theorem 1. $\left\{x_{k}\right\}$ is a normal family of independent, real-valued, symmetric random variables. In order that $\left\{\mathrm{x}_{k}\right\}$ be summable- N_{p} in probability to 0 , it is necessary and sufficient that, as $n \rightarrow \infty$,

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n-k}^{2} \sigma_{k}^{2}=o\left(P_{n}^{2}\right) \tag{3-4}
\end{equation*}
$$

Theorem 1 follows immediately from Theorem 5.3 of [1] by letting $p_{n-k} P_{n}^{-1}=a_{n k}$. The proof of Theorem 5.3 in [1] did not depend on the special character of $\left\|a_{n k}\right\|$ as a Cesàro matrix.

The basic tools of the present investigation are Theorems 2 and 3, which are analogues of (2-1) and (2-2). In the following, regularity of N_{p} for sequences of real numbers is not assumed unless explicitly
stated. It is assumed always that $p_{n} \geqq 0, q_{n} \geqq 0, p_{0}=q_{0}=1$.
Let the following generating functions and coefficients be defined formally:

$$
\begin{array}{rlrl}
p(x) & =\sum_{n=0}^{\infty} p_{n}^{2} x^{n} ; & q(x) & =\sum_{n=0}^{\infty} q_{n}^{2} x^{n} ; \\
\lambda(x)=\frac{q(x)}{p(x)}=\sum_{n=0}^{\infty} \lambda_{n} x^{n} ; & \mu(x)=\frac{p(x)}{q(x)}=\sum_{n=0}^{\infty} \mu_{n} x^{n} .
\end{array}
$$

Theorem 2. Statements (3-5) and (3-6) together form a sufficient condition for $N_{p} \subset N_{q}$ with respect to the summability in probability of normal families of independent, real-valued, symmetric random variables to 0 :

$$
\begin{align*}
\sum_{k=0}^{n} P_{k}^{2}\left|\lambda_{n-k}\right| & =O\left(Q_{n}^{2}\right) \tag{3-5}\\
\lambda_{n} & =o\left(Q_{n}^{2}\right) \tag{3-6}
\end{align*}
$$

Proof. Let $\left\{x_{k}\right\}$ be any normal family of independent, real-valued, symmetric random variables which is summable- \boldsymbol{N}_{p} to 0 . Suppose (3-5) and (3-6) hold. Let $t_{k}=P_{k}{ }^{-2} \sum_{h=0}^{k} p_{k-h}^{2} \sigma_{h}^{2}(k=0,1,2, \cdots)$. By Theorem 1, $\left\{t_{k}\right\}$ is a null-sequence of non-negative numbers. Let $u_{n}=Q_{n}^{-2} \sum_{k=0}^{n} q_{n-k}^{2} \sigma_{k}^{2}(n=0,1,2, \cdots)$. To prove Theorem 2 it is sufficient to show that $\left\{u_{n}\right\}$ is also a null-sequence and apply Theorem 1 again.

Define $\sigma(x)$ as $\sum_{k=0}^{\infty} \sigma_{k}^{2} x^{k}$, formally. Now $t_{n} P_{n}^{2}=\sum_{k=0}^{n} p_{n-k}^{2} \sigma_{k}^{2}$, by definition of t_{n}. Hence $\sigma(x) p(x)=\sum_{n=0}^{\infty} t_{n} P_{n}^{2} x^{n}$. Similarly, $\sigma(x) q(x)$ $=\sum_{n=0}^{\infty} u_{n} Q_{n}^{2} x^{n}$. But $\sigma(x) q(x)=[\sigma(x) p(x)] \lambda(x)$. Hence, by equating coefficients, we see that we may write $u_{n}=\sum_{k=0}^{n} b_{n k} t_{k}$, where $b_{n k}=Q_{n}^{-2} P_{k}^{2} \lambda_{n-k}$. The sequence $\left\{u_{n}\right\}$ is seen to be obtained as the transform of $\left\{t_{k}\right\}$ by the triangular matrix $\left\|b_{n k}\right\|$. To prove Theorem 2 it suffices to show that $\left\|b_{n k}\right\|$ is null-preserving. By a theorem of Kojima [4], $\left\|b_{n k}\right\|$ is null-preserving if and only if:

$$
\begin{array}{cc}
\lim _{n \rightarrow \infty} b_{n k}=0, & \text { for each } k \\
\sum_{k=0}^{n}\left|b_{n k}\right| \leqq M<\infty, & \text { for all } n \tag{3-8}
\end{array}
$$

But (3-6) is equivalent to (3-7), and (3-5) is equivalent to (3-8). This proves Theorem 2.

Since its members are non-negative, $\left\{t_{k}\right\}$ is not an arbitrary nullsequence; hence this proof cannot yield necessary conditions for
$\boldsymbol{N}_{p} \subset \boldsymbol{N}_{q}$. Indeed, (3-5) is not necessary; see Corollary 2, following Theorem 7.

The symbol $C_{r}(r \geqq 0)$ represents the Cesàro summability method of order r over sequences of random variables.

Corollary 1. Let N_{q} be a regular Nörlund summability method. Set $q_{-1}=0$. A sufficient condition for $C_{1} \subset N_{q}$ with respect to the summability in probability of normal families of independent, real-valued, symmetric random variables to 0 is that

$$
\begin{equation*}
\sum_{k=0}^{n}(n-k+1)^{2}\left|q_{k}^{2}-q_{k-1}^{2}\right|=O\left(Q_{n}^{2}\right) \tag{3-9}
\end{equation*}
$$

Proof. Identify C_{1} with N_{p} in Theorem 2. It is found that $p(x)=(1-x)^{-1}$ and that $\lambda_{n}=q_{n}^{2}-q_{n-1}^{2}$. Condition (3-6) is automatically satisfied, since N_{q} is regular. Condition (3-5) is thus sufficient for $\boldsymbol{C}_{1} \subset \boldsymbol{N}_{q}$. But when \boldsymbol{N}_{p} is \boldsymbol{C}_{1}, (3-5) takes the form (3-9), proving the corollary.

THEOREM 3. Suppose $p_{n} \leqq p_{n+1}$ and $q_{n} \leqq q_{n+1}$, for all n. Then a sufficient condition that $\boldsymbol{N}_{p} \equiv \boldsymbol{N}_{q}$ with respect to the summability in probability to 0 of normal families of independent, real-valued, symmetric random variables is that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\left|\lambda_{k}\right|+\left|\mu_{k}\right|\right)<\infty . \tag{3-10}
\end{equation*}
$$

Proof. Let $\sum_{k=0}^{\infty}\left|\lambda_{k}\right|=A^{2}<\infty$ and $\sum_{k=0}^{\infty}\left|\mu_{k}\right|=B^{2}<\infty$. Since $p(x)$ $=q(x) \mu(x)$, and since q_{n} is nondecreasing, we find that $p_{n}^{2}=\sum_{k=0}^{n} q_{k}^{2} \mu_{n-k}$ $\leqq q_{n}^{2} \sum_{k=0}^{n}\left|\mu_{n-k}\right| \leqq B^{2} q_{n}^{2}$. Thus $p_{n} \leqq B q_{n}$, whence it follows that, for all $k \leqq n, P_{k} \leqq B Q_{n}$. Hence, for all n,

$$
Q_{n}^{-2} \sum_{k=0}^{n} P_{k}^{2}\left|\lambda_{n-k}\right| \leqq B^{2} \sum_{k=0}^{n}\left|\lambda_{n-k}\right| \leqq B^{2} A^{2}<\infty
$$

Therefore (3-5) is satisfied. Since $\sum\left|\lambda_{n}\right|<\infty, \lambda_{n}=o(1)$ and (3-6) is satisfied. By Theorem 2, $N_{p} \subset N_{q}$ for all normal families under consideration. By interchanging p and q it is seen similarly that $N_{q} \subset N_{p}$. Hence $\boldsymbol{N}_{p} \equiv \boldsymbol{N}_{q}$, proving Theorem 3.

With the strong hypothesis that p_{n} and q_{n} are nondecreasing, Theorem 3 is rather weak. In fact, it follows from Theorem 5 that if $p_{n} \leqq p_{n+1}$ and $q_{n} \leqq q_{n+1}$, for all n, and if N_{p} and N_{q} are both regular, then $\boldsymbol{N}_{p} \equiv \boldsymbol{N}_{q}$.

Theorem 4. Let N_{q} be any regular Nörlund summability method such
that $C_{1} \subset N_{q}$ with respect to sequences of real numbers. Then $\mathbf{C}_{1} \subset N_{q}$ with respect to the summability in probability of normal families of independent, real-valued, symmetric random variables to 0.

Proof. If N_{q} satisfies the hypothesis, we know by (2-3) that

$$
\begin{equation*}
\sum_{k=0}^{n}(n+1-k)\left|q_{k}-q_{k-1}\right|=O\left(Q_{n}\right) \tag{3-11}
\end{equation*}
$$

By Lemma 3, proved in §4, (3-11) implies (3-9). By Corollary 1 above, (3-9) implies that $\boldsymbol{C}_{1} \subset \boldsymbol{N}_{q}$.

Theorem 5 is a second special case in which it is shown that $N_{p} \subset N_{q}$ implies $\boldsymbol{N}_{p} \subset \boldsymbol{N}_{q}$. Indeed, in this case it is even shown that $\boldsymbol{N}_{p} \equiv \boldsymbol{N}_{q}$. Since it is possible that $N_{q} \mp N_{p}$, it is untrue that $N_{q} \subset N_{p}$ implies $N_{q} \subset N_{p}$.

Theorem 5. Let N_{q} be any regular Nörlund summability method such that $q_{n} \leqq q_{n+1}$, for all n. Then $\mathbf{C}_{1} \equiv \boldsymbol{N}_{q}$ with respect to the summability in probability of normal families of independent, real-valued, symmetric random variables to 0 .

Proof. Given a regular N_{q} with $q_{n} \leqq q_{n+1}$ for all n. By (2-4), $C_{1} \subset N_{q}$. Hence, by Theorem $4, \boldsymbol{C}_{1} \subset \boldsymbol{N}_{q}$. There remains only the proof that $N_{q} \subset C_{1}$. This will be given in two steps.
I. Since N_{q} is regular, for each n we have, as $r \rightarrow \infty, q_{r} / Q_{n+r} \leqq q_{r} / Q_{r}$ $\rightarrow 0$. Let $\delta(n)=\max _{r \geqq 0}\left(g_{r} / Q_{n+r}\right)$. We shall prove that

$$
\begin{equation*}
n \delta(n) \geqq \beta>0 \quad(n=1,2,3, \cdots) \tag{3-12}
\end{equation*}
$$

Let $t_{r}=q_{r} / Q_{r}$. Then

$$
\frac{q_{r}}{Q_{n+r}}=t_{r}\left(1-t_{r+1}\right)\left(1-t_{r+2}\right) \cdots\left(1-t_{r+n}\right)
$$

Fix $n>0$. Since $t_{0}=1$ and $\lim _{r} t_{r}=0$, we may let $r(n)$ be the largest value of r for which $t_{r} \geqq(n+1)^{-1}$. Then

$$
\begin{align*}
\frac{q_{r(n)}}{Q_{n+r(n)}} & >\frac{1}{n+1}\left(1-\frac{1}{n+1}\right)^{n} \tag{3-13}\\
& =\frac{1}{n+1}\left\{\left(1+\frac{1}{n}\right)^{n}\right\}^{-1} \cong \frac{e^{-1}}{n+1} .
\end{align*}
$$

Since $\delta(n) \geqq q_{r(n)} / Q_{n+r(n)}$, it is seen from (3-13) that (3-12) is true.
II. Suppose, for a contrapositive proof, that $\left\{\mathrm{x}_{k}\right\}$ is a normal family of independent, real-valued, symmetric random variables which is not summable- C_{1} to 0 . Let $s_{-1}=0$; for $n \geqq 0$ let $s_{n}=\sum_{k=0}^{n} \sigma_{k}^{2} \leqq s_{n+1}$. By

Theorem 1, $\left\{n^{-2} s_{n}\right\}$ is not a null-sequence; we can therefore find $\epsilon>0$ and integers $0<n_{1}<n_{2}<\cdots<n_{i}<n_{i+1}<\cdots$ such that

$$
\begin{equation*}
s_{n i} \geqq \epsilon n_{i}^{2} \quad(i=1,2, \cdots) \tag{3-14}
\end{equation*}
$$

Let $q_{-1}=0$. Let $\phi(n)=Q_{n}^{-2} \sum_{k=0}^{n} \sigma_{k}^{2} q_{n-k}^{2}=Q_{n}^{-2} \sum_{k=0}^{n} s_{k}\left(q_{n-k}^{2}-q_{n-k-1}^{2}\right)$. By Theorem 1, $\left\{\mathbf{x}_{\mathbf{k}}\right\}$ is summable \boldsymbol{N}_{q} to 0 if and only if $\{\phi(n)\}$ is a null-sequence. To complete the contrapositive proof we show that $\{\phi(n)\}$ is not a null-sequence. Fix any n_{i}. Since q_{n} and s_{n} are both nondecreasing, it is seen for all $n \geqq n_{i}$ that

$$
\begin{aligned}
\phi(n) & \geqq Q_{n}^{-2} \sum_{k=n i}^{n} s_{k}\left(q_{n-k}^{2}-q_{n-k-1}^{2}\right) \\
& \geqq Q_{n}^{-2} s_{n i} \sum_{k=n i}^{n}\left(q_{n-k}^{2}-q_{n-k-1}^{2}\right) \\
& =s_{n i} q_{n-n i}^{2} Q_{n}^{-2} \\
& \geqq \epsilon n_{i}^{2} q_{n-n i}^{2} Q_{n}^{-2} .
\end{aligned}
$$

The last inequality is by (3-14). Hence for some integer n_{i}^{\prime} greater than n_{i} we have

$$
\phi\left(n_{i}^{\prime}\right)>\epsilon n_{i}^{2}\left\{2^{-1} \max _{n \geq n_{i}}\left(q_{n-n_{i}}^{2} Q_{n}^{-2}\right)\right\}=2^{-1} \epsilon n_{i}^{2}\left\{\delta\left(n_{i}\right)\right\}^{2} .
$$

By (3-12) we see that $\phi\left(n_{i}^{\prime}\right)>2^{-1} \epsilon \beta^{2}>0$. Thus $\{\phi(n)\}$ cannot be a null-sequence, completing the proof of Theorem 5.

The satisfaction of condition (3-12) is equivalent to regularity for Nörlund summability methods N_{p} whose counterparts N_{p} can sum to 0 a sequence $\left\{x_{k}\right\}$ of random variables which are not all identically zero. That is, nonregular Nörlund methods which satisfy (3-12) have only a trivial applicability to the summability of random variables.

It was proved in [1, Theorem 5.10] that, for $r>1, C_{1} \equiv C_{r}$ with respect to the summability to 0 of arbitrary sequences $\left\{x_{k}\right\}$ of independent, real-valued, symmetric random variables. When we further restrict $\left\{\mathrm{x}_{k}\right\}$ to normal families, the present Theorem 5 extends identity with \boldsymbol{C}_{1} to a wide class of Nörlund summability methods including all methods \boldsymbol{C}_{r} for $r>1$.

Theorem 6 is the third special case in which it is shown that $N_{p} \subset N_{q}$ implies $\boldsymbol{N}_{p} \subset \boldsymbol{N}_{q}$.

Theorem 6. Let N_{p} be any Nörlund summability method such that $p_{n} \geqq p_{n+1}$, for all n. Then $N_{p} \subset C_{1}$ with respect to the summability in prob-
ability of normal families of independent, real-valued, symmetric random variables to 0 .

Proof. Let C_{1} be identified with the N_{q} of Theorem 2. We have $p(x)=\sum_{n=0}^{\infty} p_{n}^{2} x^{n}$ and $q(x)=(1-x)^{-1}$. Letting $a_{n}=p_{n-1}^{2}-p_{n}^{2}$, we see formally that $\sum_{n=0}^{\infty} \lambda_{n} x^{n}=q(x) / p(x)=\left(1-\sum_{n=1}^{\infty} a_{n} x^{n}\right)^{-1}$. Hence

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \lambda_{n} x^{n}\right)\left(1-\sum_{n=1}^{\infty} a_{n} x^{n}\right)=1 \tag{3-15}
\end{equation*}
$$

Equating coefficients in (3-15), we find that $\lambda_{0}=1$ and

$$
\begin{equation*}
\lambda_{n}=a_{1} \lambda_{n-1}+a_{2} \lambda_{n-2}+\cdots+\lambda_{0} a_{n} \quad(n=1,2, \cdots) \tag{3-16}
\end{equation*}
$$

Since $\lambda_{0}=1$ and since $a_{n} \geqq 0$, it is seen from (3-16) that $\lambda_{n} \geqq 0$ for all n. (The non-negativity of $\left\{\lambda_{n}\right\}$ is also a result of Kaluza [3].) Now $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(p_{n-1}^{2}-p_{n}^{2}\right)=p_{0}^{2}=1$. By (3-16), λ_{n} is a weighted sum of $\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n}\right\}$, with total weight $\sum_{k=1}^{n} a_{k} \leqq 1$. Therefore $0 \leqq \lambda_{n} \leqq \max _{0 \leqq k \leqq n-1} \lambda_{k}$. Since $\lambda_{0}=1$, this implies that all $\lambda_{n} \leqq 1$. But $Q_{n}=n+1$. Hence $\lambda_{n}=o\left(Q_{n}^{2}\right)$, proving (3-6).

Let $R_{n}=\sum_{k=0}^{n} \phi_{\mathbf{k}}^{2}$. We have the following formal identities:
$\lambda(x)=\frac{q(x)}{p(x)}=\frac{(1-x)^{-1} q(x)}{(1-x)^{-1} p(x)}=\frac{(1-x)^{-2}}{(1-x)^{-1} \sum_{n} p_{n}^{2} x^{n}}=\frac{\sum_{n}(n+1) x^{n}}{\sum_{n} R_{n} x^{n}}$.
Therefore $\lambda(x) \sum_{n=0}^{\infty} R_{n} x^{n}=\sum_{n=0}^{\infty}(n+1) x^{n}$, formally. Equating coefficients of x^{n} and remembering that $\lambda_{n} \geqq 0$, we find that

$$
\begin{equation*}
\sum_{k=0}^{n} R_{k}\left|\lambda_{n-k}\right|=n+1 \quad(n=0,1,2, \cdots) \tag{3-17}
\end{equation*}
$$

But, by Schwarz's inequality, $P_{k}^{2}=\left(\sum_{j=0}^{k} p_{j}\right)^{2} \leqq\left(\sum_{j=0}^{k} p_{j}^{2}\right)\left(\sum_{j=0}^{k} 1\right)$ $=(k+1) R_{k}$. Hence

$$
\begin{equation*}
P_{k}^{2} \leqq(n+1) R_{k} \quad(k=0,1,2, \cdots, n) \tag{3-18}
\end{equation*}
$$

From (3-17) and (3-18) it is seen that $\sum_{k=0}^{n} P_{k}^{2}\left|\lambda_{n-k}\right| \leqq(n+1) \sum_{k=0}^{n} R_{k}$ $\left|\lambda_{n-k}\right|=(n+1)^{2}=Q_{n}^{2}$. Hence (3-5) is satisfied. By Theorem 2 the present proof is complete.

Any Nörlund method N_{p} with nonincreasing p_{n} is necessarily regular, for $p_{n} / P_{n} \leqq p_{n} / n p_{n}=1 / n \rightarrow 0$, as $n \rightarrow \infty$. Moreover, $N_{p} \subset C_{1}$.

The Cesàro summability methods $C_{r}(0<r<1)$ are of the Nörlund type with nonincreasing $\left\{p_{n}\right\}$. Theorem 5.5 of [1] showed that, for $0<r<1, \boldsymbol{C}_{r} \subset \boldsymbol{C}_{1}$ over arbitrary sequences of independent, real-valued,
symmetric random variables. Theorem 5.6 of [1] showed that, for $0<r<1, \mathbf{C}_{1} \not \subset \boldsymbol{C}_{r}$, even over normal families. Hence the conclusion of Theorem 6 cannot in general be extended to assert that $\boldsymbol{N}_{p} \equiv \mathbf{C l}_{1}$.

One may ask whether Theorem 4 has a converse. That is, if N_{q} is regular, and if $C_{1} \ddagger N_{q}$ over real sequences, can one always find a normal family summable- \boldsymbol{C}_{1} to 0 but not summable- \boldsymbol{N}_{q} to 0 ? When N_{q} is $C_{r}(0<r<1)$, we just saw that the answer is "yes." In general, however, the answer is "no," as is shown by the following theorem.

Theorem 7. There exists a regular Nörlund summability method N_{p} with the following properties:
(3-19) $N_{p} \subset C_{1}$, with respect to sequences of real numbers;
(3-20) $C_{1} \subseteq N_{p}$, with respect to sequences of real numbers;
(3-21) $\boldsymbol{N}_{p} \equiv \mathbf{C}_{1}$, with respect to the summability in probability of normal families of independent, real-valued, symmetric random variables to 0 .

Proof. Let $p_{n}=1$ (n even); let $p_{n}=0$ (n odd). Then $P_{n} \cong n / 2$. Now $p^{*}(x)=\sum_{n} p_{n} x^{n}=\sum_{n} p_{n}^{2} x^{n}=p(x)=\left(1-x^{2}\right)^{-1}$. Let C_{1} be identified with the N_{q} of (2-1), (2-2), and Theorem 2. Then $q_{n}=1$ and $Q_{n}=n+1$, for all n. Furthermore, $q^{*}(x)=\sum_{n} q_{n} x^{n}=\sum_{n} q_{n}^{2} x^{n}=(1-x)^{-1}$. Then $\lambda^{*}(x)$ $=\lambda(x)=(1-x)^{-1} /\left(1-x^{2}\right)^{-1}=1+x$, while $\mu^{*}(x)=\mu(x)=1 / \lambda(x)$ $=(1+x)^{-1}$. Hence $\lambda_{0}{ }^{*}=\lambda_{0}=\lambda_{1}^{*}=\lambda_{1}=1 ; \lambda_{n}{ }^{*}=\lambda_{n}=0 \quad(n \geqq 2) ; \mu_{n}{ }^{*}=\mu_{n}$ $=(-1)^{n}$, for all n.
I. Obviously $\lambda_{n}^{*}=o\left(Q_{n}\right)$; and $\sum_{k=0}^{n} P_{k}\left|\lambda_{n-k}^{*}\right|=P_{n}+P_{n-1} \cong n=O\left(Q_{n}\right)$. Hence, by (2-1), $N_{p} \subset C_{1}$ over sequences of real numbers.
II. Since $\sum_{n=0}^{\infty}\left|\mu_{n}^{*}\right|=\infty$, we find from (2-2) that $N_{p} \neq C_{1}$ for sequences of real numbers. Since $N_{p} \subset C_{1}$, we know that $C_{1} \subseteq N_{p}$.
III. Obviously $\lambda_{n}=o\left(Q_{n}^{2}\right)$; and $\sum_{k=0}^{n} P_{k}^{2}\left|\lambda_{n-k}\right|=P_{n}^{2}+P_{n-1}^{2} \cong n^{2} / 2$ $=O\left(Q_{n}^{2}\right)$. Hence, by Theorem 2, $N_{p} \subset \mathbf{C}_{1}$ for the $\left\{\mathrm{x}_{k}\right\}$ of (3-19).
IV. To prove $\boldsymbol{C}_{1} \subset \boldsymbol{N}_{p}$ we are unable to use Theorem 2 by interchanging p and q and putting $\left\{\mu_{n}\right\}$ into (3-5) and (3-6). However, (3-5) is not a necessary condition, and we shall show directly that $\boldsymbol{C}_{1} \subset \boldsymbol{N}_{p}$. Consider any normal family $\left\{\mathrm{x}_{k}\right\}$ which is summable- \boldsymbol{C}_{1} to 0. By Theorem 1, $n^{-2} \sum_{k=0}^{n} \sigma_{k}^{2} \rightarrow 0$, as $n \rightarrow \infty$. Hence $P_{n}^{-2} \sum_{k=0}^{n} p_{n}^{2} \cdots k \sigma_{k}^{2}$ $\leqq P_{n}^{-2} \sum_{k=0}^{n} \sigma_{k}^{2} \cong\left(4 / n^{2}\right) \sum_{k=0}^{n} \sigma_{k}^{2} \rightarrow 0$, as $n \rightarrow \infty$. Theorem 1, applied to N_{p}, proves that $\left\{\mathbf{x}_{k}\right\}$ is summable- \boldsymbol{N}_{p} to 0 . Hence $\boldsymbol{C}_{1} \subset \boldsymbol{N}_{p}$ and so, by III above, $\boldsymbol{C}_{1} \equiv \boldsymbol{N}_{p}$. This completes the proof of Theorem 7 .

It is curious that the necessity of condition (3-5) for $N_{p} \subset N_{q}$ over normal families $\left\{x_{k}\right\}$ breaks down just for an example where we fail to have $N_{p} \subset N_{q}$ over real sequences.

Corollary 2. Condition (3-5) is not necessary for $N_{p} \subset N_{q}$ with re-
spect to the summability in probability of a normal family of independent, real-valued, symmetric random variables to 0 .
4. Lemmas used in proof of Theorem 4. The following Lemmas 1 and 2 are used to prove Lemma 3, which was applied to the proof of Theorem 4. In all three lemmas, $c_{-1}=0$ and $\left\{c_{i}\right\}(i=0,1,2, \cdots)$ is an arbitrary sequence of non-negative numbers. The number $\left|c_{i}-c_{i-1}\right|$ is usually abbrevated to h_{i}.

Lemma 1. With the above notation, for each integer $n=1,2,3, \cdots$, (4-1) holds:

$$
\begin{equation*}
2 \sum_{i=0}^{n-1}\left|c_{i}^{2}-c_{i-1}^{2}\right| \leqq 2 \sum_{i, j=0}^{n-1} h_{i} h_{j} \tag{4-1}
\end{equation*}
$$

Proof. We use a proof by induction. Since $c_{-1}=0$, (4-1) is true for $n=1$. Suppose that (4-1) holds for $n=N$. Let $c_{N} \geqq 0$ be arbitrary. Now

$$
\begin{aligned}
\sum_{i=0}^{N}\left|c_{i}^{2}-c_{i-1}^{2}\right| & \leqq\left|c_{N}^{2}-c_{N-1}^{2}\right|+\sum_{i, j=0}^{N-1} h_{i} h_{j} \\
& =\left|c_{N}^{2}-c_{N-1}^{2}\right|+\sum_{i, j=0}^{N} h_{i} h_{j}-2 \sum_{i=0}^{N-1} h_{i} h_{N}-h_{N}^{2}
\end{aligned}
$$

Thus to prove (4-1) for $n=N+1$ it is sufficient to prove that

$$
\begin{equation*}
\left|c_{N}^{2}-c_{N-1}^{2}\right|-2 \sum_{i=0}^{N-1} h_{i} h_{N}-h_{N}^{2} \leqq 0 \tag{4-2}
\end{equation*}
$$

Now $c_{N-1}=\sum_{i=0}^{N-1}\left(c_{i}-c_{i-1}\right) \leqq \sum_{i=0}^{N-1}\left|c_{i}-c_{i-1}\right|$. Therefore

$$
\begin{equation*}
2 c_{N-1} \leqq 2 \sum_{i=0}^{N-1} h_{i} \tag{4-3}
\end{equation*}
$$

Case 1. Suppose $c_{N} \geqq c_{N-1}$. Adding $c_{N}-c_{N-1}=h_{N}$ to both sides of (4-3), we find that

$$
\begin{equation*}
c_{N}+c_{N-1} \leqq 2 \sum_{i=0}^{N-1} h_{i}+h_{N} \tag{4-4}
\end{equation*}
$$

Multiplying both sides of (4.3) by $\left|c_{N}-c_{N-1}\right|=h_{N}$, we see that (4-2) holds, proving the lemma for Case 1.

Case 2. Suppose $c_{N}<c_{N-1}$. Then from (4-3) we see that $2 c_{N}$ $<2 \sum_{i=0}^{N-1} h_{i}$. Adding $c_{N-1}-c_{N}=h_{N}$ to both sides of the last inequality, we see that (4-4) holds. The proof of the lemma is completed as in Case 1.

Lemma 2. With the same notation, for each integer $n=1,2,3, \cdots$, (4-5) holds:

$$
\begin{align*}
2 \sum_{i=0}^{n-1}\left|c_{i}^{2}-c_{i-1}^{2}\right| & +\left|c_{n}^{2}-c_{n-1}^{2}\right| \tag{4-5}\\
& \leqq 2 \sum_{i, j=0}^{n-1} h_{i} h_{j}+2 h_{n} \sum_{i=0}^{n-1}(n+1-i) h_{i}+h_{n}^{2}
\end{align*}
$$

Proof. By Lemma 1 it suffices to prove that

$$
\begin{equation*}
\left|c_{n}^{2}-c_{n-1}^{2}\right| \leqq 2 h_{n} \sum_{i=0}^{n-1}(n+1-i) h_{i}+h_{n}^{2} \tag{4-6}
\end{equation*}
$$

If $h_{n}=\left|c_{n}-c_{n-1}\right|=0,(4-6)$ is trivial. If not, (4-6) is equivalent to (4-7):

$$
\begin{equation*}
c_{n}+c_{n-1} \leqq 2 \sum_{i=0}^{n-1}(n+1-i) h_{i}+h_{n} \tag{4-7}
\end{equation*}
$$

To prove (4-7), we start with the inequality

$$
\begin{aligned}
c_{n-1} & \leqq c_{0}+c_{1}+\cdots+c_{n-2}+2 c_{n-1} \\
& =\sum_{i=0}^{n-1}(n+1-i)\left(c_{i}-c_{i-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 c_{n-1} \leqq 2 \sum_{i=0}^{n-1}(n+1-i) h_{i} \tag{4-8}
\end{equation*}
$$

Now (4-7) follows from (4-8) just as (4-4) followed from (4-3), by use of two cases. Thus the proof is complete.

Lemma 3. With the same notation, for each integer $n=0,1,2, \cdots$, (4-9) holds:

$$
\begin{align*}
& \sum_{k=0}^{n}(n-k+1)^{2}\left|c_{k}^{2}-c_{k-1}^{2}\right| \tag{4-9}\\
& \leqq\left\{\sum_{k=0}^{n}(n-k+1)\left|c_{k}-c_{k-1}\right|\right\}^{2}
\end{align*}
$$

Proof. Let $\phi_{n}=\sum_{k=0}^{n}(n-k+1)^{2}\left|c_{k}^{2}-c_{k-1}^{2}\right|$, for $n=0,1,2, \cdots$ Let $\phi_{-1}=0$. Let $\psi_{n}=\left\{\sum_{k=0}^{n}(n-k+1) h_{k}\right\}^{2}=\sum_{i, j=0}^{n}(n-i+1)(n-j+1) h_{i} h_{j}$, for $n=0,1,2, \cdots$. Let $\psi_{-1}=0$. We must prove that $\phi_{n} \leqq \psi_{n}$, for all n. Since the result is trivial for $n=0$, fix $n \geqq 1$.

We take first and second differences of ϕ_{n} and ψ_{n} :

$$
\begin{aligned}
& \Delta \phi_{n}=\phi_{n}-\phi_{n-1}=\sum_{k=0}^{n}(2 n-2 k+1)\left|c_{k}^{2}-c_{k-1}^{2}\right| \\
& \Delta^{2} \phi_{n}=\Delta \phi_{n}-\Delta \phi_{n-1}=2 \sum_{k=0}^{n-1}\left|c_{k}^{2}-c_{k-1}^{2}\right|+\left|c_{n}^{2}-c_{n-1}^{2}\right| \\
& \Delta \psi_{n}=\psi_{n}-\psi_{n-1}=\sum_{i, j=0}^{n}(2 n+1-i-j) h_{i} h_{j} \\
& \Delta^{2} \psi_{n}=\Delta \psi_{n}-\Delta \psi_{n-1}=2 \sum_{i, j=0}^{n-1} h_{i} h_{j}+2 h_{n} \sum_{i=0}^{n-1}(n+1-i) h_{i}+h_{n}^{2}
\end{aligned}
$$

Now by Lemma $2, \Delta^{2} \phi_{n} \leqq \Delta^{2} \psi_{n}$ for all integers $n \geqq 1$. Hence $\Delta \phi_{n} \leqq \Delta \psi_{n}$ and therefore $\phi_{n} \leqq \psi_{n}$ for the same integers. This proves Lemma 3.

References

1. G. E. Forsythe, Cesaro summability of independent random variables, Duke Math. J. vol. 10 (1943) pp. 397-428.
2. E. Hille and J. D. Tamarkin, On the summability of Fourier series. I, Trans. Amer. Math. Soc. vol. 34 (1932) pp. 757-783.
3. Th. Kaluza, Ueber die Koeffizienten reziproker Potenzreihen, Math. Zeit. vol. 28 (1928) pp. 161-170; p. 162.
4. T. Kojima, On generalized Tooplitz's theorems on limit and their applications, Tôhoku Math. J. vol. 12 (1917) pp. 291-326; p. 300.
5. P. Lévy, Sur la sommabilité des séries aleatoires divergentes, Bull. Soc. Math. France vol. 63 (1935) pp. 1-35.
6. N. E. Nörlund, Sur une application des fonctions permutables, Lunds Universitets Årsskrift, Afdelning 2, N. S. vol. 16 (1920); 10 pp.
7. M. Riesz, Sur l'équivalence de certaines méthodes de sommation, Proc. London Math. Soc. (2) vol. 22 (1923-1924) pp. 412-419.
8. L. L. Silverman and J. D. Tamarkin, On the generalization of Abel's theorem for certain definitions of summability, Math. Zeit. vol. 29 (1929) pp. 161-170.
9. G. F. Woronoi, Extension of the notion of the limit of the sum of an infinite series, translated and discussed by J. D. Tamarkin, Ann. of Math. (2) vol. 33 (1932) pp. 422-428.

Boeing Aircraft Company

[^0]: Presented to the Society, December 29, 1946; received by the editors September 23, 1946.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

