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In this note we shall prove for each positive integer n the following 
theorem An concerning convex sets in an w-dimensional euclidean 
space. 

THEOREM A„. Any point interior to the convex hull of a set E in an 
n-dimensional euclidean space is interior to the convex hull of some sub
set of E containing at most 2n points. 

This theorem is similar to the well known result that any point in 
the convex hull of a set E in an w-dimensional euclidean space lies in 
the convex hull of some subset of E containing at most n-\-l points 
[l, 2 ] . 1 In these theorems the set E is an arbitrary set in the space. 
The convex hull of E, denoted by H(E), is the set product of all con
vex sets in the space which contain E. 

A euclidean subspace of dimension n — 1 in an w-dimensional eu
clidean space will be called a plane. Every plane in an ^-dimensional 
euclidean space separates its complement in the space into two con
vex open sets, called open half-spaces, whose closures are convex 
closed sets, called closed half-spaces. If each of the two open half-
spaces bounded by a plane L intersects a given set £ , then L is said 
to be a separating plane of E ; otherwise L is said to be a nonseparating 
plane of E. 

In order to prove our sequence of theorems we shall make use of 
the following result: A point i is interior to the convex hull of a set E 
in an ^-dimensional euclidean space if and only if ever}'- plane through 
i is a separating plane of £ [l ]. 

We prove our sequence of theorems by induction. The proof of 
Theorem Ai is trivial and will be omitted. Now suppose that Theorem 
An_i is true for an integer n > 1. We shall show that Theorem An is also 
true. To this end let i be a point interior to the convex hull of a set E 
in an w-dimensional euclidean space. We are to demonstrate tha t i 
is interior to the convex hull of some subset P of E containing at 
most In points. 

First we show that i is interior to the convex hull of some finite 
subset Q of E. Since i is interior to H(E)y it is interior to a simplex 
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lying in H (E). Consider the n+1 vertices g> (& = 1, • • • , n + 1) of 
such a simplex. The vertex qk lies in H(E) and hence, according to 
the previously mentioned result of Carathéodory and Steinitz, lies 
in the convex hull of some subset Qk of E containing a t most n+1 
points. The set Q—^kQk is then a finite subset of E containing a t 
most (n+1)2 points. Evidently the convex hull of this set contains 
the simplex with vertices qk and hence contains the point i in its 
interior.2 

Since Q is finite, there exists a subset P of Q which contains the 
point i in the interior of its convex hull and which is irreducible with 
respect to this property. Let p be a definite point of P . Then i is not 
an interior point of H(P — p), so some plane L through i is a non-
separating plane of P—p. Let D be that one of the two open half-
spaces bounded by L which is disjoint with P—p and let D' be the 
other open half-space. Thus P—p lies in the closed half-space D' 
complementary to D. 

Since i is an interior point of the convex hull of P , the open half-
space D contains a point of P . This point must be p, for D contains 
no point of P — p. Similarly the open half-space D' contains a point p' 
of P . We shall use this point p1 later in the proof. __ 

Consider an arbitrary point x of the closed half-space D'. Since p 
lies in the complementary open half-space D, the line segment 
H(p+x) intersects the boundary L of D in exactly one point which 
we denote by <j>(x). Thus 4>(x) is the projection of x from p onto L. 
_ T h e projection 0 is 1-1 over the subset P — p of the closed half-space 
D'. For suppose, to the contrary, tha t some two points pi and p2 of 
P—p project into the same point of L. The three points p, pi, and p2 

are then collinear. Now p does not lie between the other two points, 
else the open half-space D containing p would contain a t least one of 
these other two points. We may then assume pi and p2 to be so labeled 
tha t a linear order of the three points is p, pu p2. Therefore 

Pi C H(p + p2) C H(P - £i), 

so the sets H(P-pi) and H(P) are identical. The point i is then in
terior to H(P—pi) in contradiction to the irreducibility of P . 

The projection of the convex hull of a set is the convex hull of the 
projection of tha t set, and the projection of an interior point of a 
convex set is an interior point of the projection of that set [3]. There
fore the point <t>(i)—i is an interior point of the set <j>(H(P--p)) 
=H(<t>{P—p)) in the euclidean subspace L of dimension n — 1 . Ac-

2 That i is interior to the convex hull of some finite subset of E may also be proved 
by the Heine-Borel theorem. I am indebted to the referee for the above proof. 
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cording to Theorem Aw_i the point i is an interior point in L of the 
convex hull of some subset PL of <j>(P—p) containing at most 2w —2 
points. Define 

P* = p + P<jr\PL) + p'. 

Since the projection 0 is 1-1 over P — p, the set P<j>-l(PL) is a subset 
of P containing a t most 2n — 2 points. Therefore P* is a subset of P 
containing a t most 2n points. 

We shall show that i is interior to H(P*). First we notice that the 
coplanar set PL lies in H(P*). For, if x is an arbitrary point of 
P<t>-\PL), then 

*(*) C H(p +x)C fl(P*), 

since both p and x lie in H(P*). Now consider the pyramid H(p+PL) 
whose apex p lies in D and whose base H(PL) lies in L. The point i 
is an interior point in L of the base H(PL) of this pyramid, so some 
closed hemisphere A with center i and base on L lies in H(p+PL). 
Similarly, some closed hemisphere A ' with center i and base on L lies 
in the pyramid H(p'+PL). Evidently there exists a sphere I with 
center * such that ICA+A'CH(p+PL)+H(p'+PL)CH(P*). The 
point i is then interior to the convex hull of the subset P* of P . From 
the irreducibility of P it follows that P*=P. Therefore P contains 
a t most 2n points. 

Thus for every integer n>l, Theorem Aw_i implies Theorem A». 
Since Theorem Ai is true, we conclude by induction that Theorem An 

is true for each positive integer n. 
The following example shows that the number 2» in Theorem An 

cannot be improved. Let i be the zero point of an w-dimensional vec
tor space. Choose any n linearly independent and hence nonzero 
points in this space. Let E be the set consisting of these points and 
their vector negatives; E then contains 2n points. I t is easy to show 
tha t the zero point i is interior to the convex hull of E but is not in
terior to the convex hull of any proper subset of £ . 
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