
REMARKS ON METRIZABILITY 

M. H. STONE 

In connection with those paragraphs of my paper Applications of 
the theory of Boolean rings to general topology (Trans. Amer. Math. 
Soc. vol. 41 (1937) pp. 375-481) dealing with regular spaces, I have 
long been curious to know whether certain results proved there could 
be used to obtain the well known theorem that a separable (Haus-
dorff) space is metrizable if (and only if) it is regular. Since a positive 
answer to the question thus posed may have some interest from a 
methodological point of view, I communicate a demonstration here. 
The essential step in this demonstration even has some intrinsic in
terest, consisting as it does in the proof of new facts about dissection-
spaces and the related maps. However, as a proof of the metrizability 
theorem this discussion is not as simple or as direct as the now classi
cal proof of Tychonofï and Urysohn—which, it may be recalled, con
sists in showing, first, tha t a separable regular space is normal1 and, 
second, that a separable normal space is metrizable.2 

As a direct corollary of theorems established in our paper cited 
above, we may state the following result. 

THEOREM. If $ft is a separable regular space, then 9t has a map 
m(dt, ©, X) where X is a continuous family of disjoint closed sets in a 
compact metric space ©, which may be taken as a closed subset of the 
Cantor discontinuum ; in other words, 9Î is topologically equivalent to the 
space obtained by introducing the "weak" topology in X. 

Theorems 26 and 69 of our paper show that the desired map can 
be constructed with © taken to be the Boolean space representing the 
countable Boolean algebra generated by an arbitrarily chosen count
able basis for 9Î; but Theorems 1, 10, and 13 show that the space © 
is topologically equivalent to a closed subspace of the Cantor discon
tinuum. 

We shall now establish the following result. 

THEOREM. Let X be a continuous familyz of mutually disjoint, non-
void, compact subsets ï in a metric space ©. Then the space obtained by 
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1 Tychonoff, Math. Ann. vol. 95 (1925-1926) pp. 139-142. 
2 Urysohn, Math. Ann. vol. 94 (1925) pp. 309-315. 
8 In the terminology of R. L. Moore, an upper semi-continuous collection. 
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introduction of the "weak" topology in X is metrizable; and, if © is 
separable, so is X. 

Since the final statement of the theorem is an immediate corollary 
of Theorem 21 of our cited paper, we need concern ourselves only 
with the metrizability of X. 

Now the system of neighborhoods assigned in the "weak" topology 
to an arbitrary 36o i n X consists of all the subfamilies U(36o, ®) of X 
obtainable by the following construction: ® is chosen arbitrarily as 
an open neighborhood of 36o—that is, as an open set in © which con
tains 9£o—and U(Xo, ®) is then defined as the class of all 36 in X such 
tha t 9£C®. Our first step is to show that this system of neighbor
hoods can be replaced by an equivalent system of neighborhoods de
fined in terms of the distance-function p given in ©. For this purpose, 
let ®(36o, e)y where e>0, denote the e-neighborhood of 36o—that is to 
say, the open set characterized by the fact that each of its points is a t 
distance less than e from some point of 36o- I t is now almost immediate 
that the neighborhoods U(36o, e) = U(Xo, ®(3Eo, e)), where e runs through 
any sequence of positive values with limit 0, constitute a system con
tained in and equivalent to the system originally given. Indeed, the 
only detail to be verified is that each open neighborhood ® of 3£o de
termines a positive eo with the property that @(36o, tf)C® for e<eo. 
If the distance p(9£o, @') between X0 and the complement ®' of ® is 
not equal to 0, we can obviously take e0 = p(36o, ®0- Hence we can 
obtain the result desired if we can deduce a contradiction from the 
assumption that p(36o, ®0 = 0 . This assumption implies the existence 
of sequences {%n} in 9£o and {tjn} in ©' with limn^00p(^r?, fy„) = 0, where 
by virtue of the compactness of 36o the first sequence can be chosen 
so as to have a limit £ in 360; but then the sequence {t)n} must also 
have X as its limit and, in view of the fact that ®' is closed, this limit 
is in ©'. However, it is clear that there is no £ common to 9£0 and ®'. 

The next step is to interpret in terms of these neighborhoods the 
hypothesis that the family X is continuous. In terms of the original 
system of neighborhoods, the continuity of X means that to every 
open neighborhood ® of Xo there corresponds a second open neigh
borhood ®o with the property that every 36 having a point in common 
with ®o is contained in ®. If © is here taken to be an e-neighborhood, 
then eo=0(#o, e) <e can obviously be so chosen that the ^-neighbor
hood of 360 has the property required of ®0: for, if any suitable ®0is 
found corresponding to ®, we may choose e0 so small that ®(36o, e0) 
C®o and can then replace ©o by ®(Xo, 0o). Since 3£ and 36o are both 
compact the distance p(3£, 36o) is equal to the distance between two 
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points suitably chosen in the respective sets; and, accordingly, 36 has 
a point in common with ®(Xo> e0) if and only if p(36, 36o) <0o- Thus 
the continuity of X is seen to imply the existence of a real function 
<£(#o, e) w î t n t n e property that 36EU(#o, e) whenever p(36, ï 0 ) <0(36o, e) 
and the property that O<0(36o> e) <£• 

With each 36o we can now associate a system of neighborhoods 
Un(ïo) =U(36o, cw) and a system of positive integers mn = ra(Xo, w) so 
that whenever Um(36o) and Um(36), w = m(36o, w), have an element in 
common the relation Um(X)CU«(96o) is satisfied. In order to do so we 
put 0i(3Êo) = l, e„+i(ïo) =0( ïo , 2-16n(ïo)), Un(Xo)=U(3£o, *n(£o)) and 
choose mw=m(36o, #) as the least positive integer such that 
2-™<gn_1_2(36o). We obviously have, by definition and recursion, the 
inequalities £n+i(36o) <2~"1gw(3Êo), 0w(Xo) <2~"n, and hence conclude that 
tnn>n-{-2. The system of neighborhoods Un(Xo) is, as we proved 
above, equivalent to that originally given inX. Now let 36i be an ele
ment common to Um(3Êo) and Uw(3c), where ra = m(36o, n); and let 362 
be an arbitrary element of Um(36). If fi is an arbitrary point of &, 
there exist points £o and £ in 36o and X respectively such that 
p(fo, fi) <0m(#o), p(j, fi) <£m(36). Hence we see that 

p(Xo, X) ^ p(ïo, ?) < «m(Xo) + em(%) 
< 2-2-w < 2«n+2(X0) 
< e„+i(£o) = 0(XQ, 2-1e71(£0)). 

Consequently we see that 9£GU(36o, 2~~1ew(3£o)). Now let £2 be an arbi
trary point of 3Ê2- Since 362 is in Um(X), there exists a point j in 36 such 
that p(f2, f) <^m(9£) <2~"1^n(Xo) ; and since 36 is in U(36o, 2~*1ön(9£o)) there 
exists a point f0 in ïo such that p(y, y0) <2""1en(36o). Hence we have 
P(?2, ?o) < « n ( X o ) , Ï 2 G U n ( X o ) , a n d U » ( X ) C U » ( 3 Ê o ) . 

The result of the preceding paragraph permits the application of a 
theorem of A. H. Frink,4 according to which the spaceXis metrizable. 

Combining the two theorems above, we evidently obtain the fol
lowing result. 

THEOREM. A separable regular space 9Î is metrizable. 

For the space © of the first theorem and its closed subsets are com
pact; and the second theorem is therefore applicable. 
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4 A. H. Frink, Bull. Amer. Math. Soc. vol. 43 (1937) pp. 133-142, Theorem 3. 


