
THE HYPERSURFACE CROSS RATIO 
TH. MOTZKIN 

Introduction. In my note on A 5 curve theorem generalizing the theo­
rem of Carnot,1 I introduced the notion of curve cross ratio. This ex­
tension of the ordinary cross ratio is the simplest situationally invari­
ant (3.4) case of the generalized or hypersurface cross ratio of n + l 
pairs of hypersurfaces in w-space which is the subject of the following 
lines. The generalized cross ratio is a t the same time a generalization 
of the resultant of n + l quantics; the connection between cross ratios 
and resultants occurred to me when reading a paper of P. Humbert.2 

The properties of the generalized cross ratio, including extensions 
of some of those of the ordinary cross ratio, will be developed, to­
gether with the similar and interdependent properties of an analogous 
generalization of the intersection of n hypersurfaces to pairs of hyper­
surfaces, in §3. This section, much of the contents of which is known, 
is parallel to §§1 and 2 on the ordinary resultant and intersection. 
In each section, after the definition and fundamental properties, the 
influence of a rational transformation of coordinates and of permu­
tation, variation and linear combination of the hypersurfaces is stud­
ied. 

1. The resultant. 1.1. DEFINITION. Let * = (#o, • • • , tfn) be a point 
in (complex, or algebraically closed) projective w-space, w^O, and 
a=(flo, • • • i dn) a system of n+l quantics of positive degrees 
âo, • • • , flB in the variables Then the resultant [a] is an 
irreducible polynomial in the coefficients of a with [#/*] = 1, such that 
[a] = 0 if, and only if, an x^O with a(x) — Q (that is, CLQ(X) = 0, • • , 
#„(#) = 0 exists. The resultant is unique since the conditions of irre-
ducibility and [#/*] = 1 distinguish it from its powers and multiples 
respectively.8 

1.2. Degree, [a] is a quantic of degree Ylkâ in the coefficients of a*,. 
Considering âk as degree of the coefficients, we can write [a]- = I I â . 

Received by the editors November 2, 1944. 
1 Bull. Amer. Math. Soc. vol. 51 (1945) pp. 972-975. 
2 Sur l'orientation des systèmes de droites, Amer. J. Math. vol. 10 (1888) pp. 258-

281. 
3 Cf. van der Waerden, Moderne Algebra vol. 2, 1931, pp. 18-21. As | | is used 

for the absolute value, [ ] (already generally used in case of the vector product) is 
preferable for determinants, resultants and intersections. The product of all de­
grees shall be denoted by JJ[â, and if âk is omitted, by Hfcâ ( = 1 for n = 0, as all void 
products including 0 degree in 3.4 and 3.8). 
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1.3. Multiplication. If one of the given quantics ak is a product 
ak=Ylakv\ we have [a]=IL[flo, • • • , a>k-i, ak

w, a*+i, • • • , a„], in 
short [ • • • , U , • • • ] = 1 1 [ L a s both sides vanish simultaneously, 
are of equal degree, and can be simultaneously equal to 1. 

1.4. Special cases. If a& = 0, then [a] = 0 . 
ForUâ = l, M 'ls a determinant. 
For n = 1, [a] is a product of H<x determinants. 
Further note the monomial case [cw***] =I3a*n* J . 
1.5. Rational transformation. Let /o, • • • , / n be quantics of equal 

degree ƒ > 0 , then y—fix) defines a rational transformation. If, for 
#5^0, also y9*0, that is, if [f] 5^0, the transformation is called regular; 
in it, to every yy there be long/ n points x* Hence, the only regular 
birational transformations are the projective transformations. 

If a(y) = 0 for x ^ 0 , then either y ^ 0 , [a] = 0, or y = 0, [ƒ] = 0. Hence 
[a(f)] must be of the form c[a] r[/]% c = 0 (that is, c is constant). 
In the monomial case a* =a*#*^ ƒ* = |8A#J/we have &*(ƒ) = a*j3/*x*/<1*, 
M / ) ] = I I ( ^ ^ ^ ) / n n ^ . We obtain [<*(ƒ)] = [a]/» [ / ] m . 

1.6. Permutation. If the quantics ak are permuted, then [a] and 
the new resultant [a'] are irreducible and of equal degree and vanish 
together, so [# ' ]=£[#] , c = 0. Choosing quantics which are products 
of linear forms, we see by 1.3 and the laws of determinants that 
c = ( ± l)m for a permutation of sign ± 1. 

1.7. Variation. If â&èâ,-, j^k, and if ak is replaced by ak+\a3', 
where X is a quantic of degree âk — cLj, then [a] and the new resultant 
[a'] are of equal degree and vanish together, so [ a ' ] = c [ a ] , c = 0. 
Choosing X = 0, we see that c = 1. 

1.8. Linear combination. If several quantics ak of equal degree are 
replaced by linear combinations ^2ljkakl hk = 0, then by repeated ap­
plication of 1.7 and 1.2 the new resultant is [a'] = [/]n*5[a]. 

If all degrees âk are equal, 1.6-1.8 are special cases of 1.5. 

2. The intersection. 2.1. DEFINITION. If ai9 • • • , an> n^ 1, are fixed 
quantics of positive degree, so that the intersection a\ = • • • =an = 0 
of n hypersurfaces consists only of a finite number of points P» (for 
w = 2, quantics without a common factor of positive degree), then for 
7 = 1 , [/, a ] = 0 only if some Z(P t )=0; hence [/, a]=JJl(Pi) with ap­
propriate multiplicities of sum I J â and with a constant factor accord­
ing to which the coordinates of the points P* are determined. The 
system of these P», whose order may be changed and whose coordi­
nates may be multiplied by constants, with product 1, will be de-

4 By Bézout's theorem, if the number of points is finite. But for, say, yoy^O, any 
variety of positive dimension of points x with yofk(x) ~-ykfo(x) = 0 would have a point 
in common with fQ(x) =*0, against the assumption of regularity. 
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noted by P = [a] (the same symbol as for the resultant, but referring 
to n quantics only) ; we consider the intersection P as product of its 
points and write accordingly [/, a] =/([#]) . 

For a general a0, [#o, a] and #<>([#]) (that is, H^o(Pi)) are of equal 
degree and vanish together, so they differ only by a constant factor c. 
Choosing a0 as product of linear forms, we see by 1.3 that c = l, so 
[a0, a] = a0([a]) (well known for n = l ) . 

2.2. Degree. If ak is replaced by cakt c = 0, then [a] becomes 
cn*5[a]; we may again say that [a] is of degree JJ_kâ in the coeffi­
cients of a, and, as in 1.2, write [a] • = H â , so the degree of an inter­
section is the number of its points. The degree of a resultant in one 
of the hypersurfaces is the number of meets of the others. 

2.3. Multiplication. By [/, # ]= / ( [# ] ) a n d 1.3 we see that again 
[ * ' * > II» ' ' * l ^ n t ]> the latter symbol denoting juxtaposition 
(union) of the points of the respective intersections. 

2.4. Special cases. If [a] is defined, then no ak is equal to 0. 
F o r J J â = l, [a] consists of n determinants ("vector product"). 
In the monomial case we have [a*****] = n « * n * (1, 0, • • • , 0). 
2.5. Rational transformation. Assume [ f l^O, and [#(ƒ)] definable 

by 2.1. A point Qi belongs to [#(ƒ)] if f(Qi) belongs to [a], so we 
may write [#(ƒ)] = [a]:f. To obtain the exact degree and factor of P 
m ƒ((?)» P u t l = xk, 1(f) =ƒ*, then, by 2.1, the formula of 1.5 becomes 
MQ) = (xk(P)Yn[f]m = xk(Pn[f]u\ or / ( [ a ] : / ) = P ' * [ / P ; ƒ• agrees 
with 1.5, fourth line. 

Rational variety. If a w + i= • • • = a n = 0 is a fixed rational variety 
f(t), t = (t0l • • • , tm), of degree / such that to different / there belong 
different points ƒ (t), then the cross ratios [a] and [a(f)] as functions 
of the coefficients of ÖO, • • • , am vanish together and are of equal 
degree, which is the number of meets of the hypersurfaces except 
ak = 0, so they differ only by a constant depending on ƒ and on the 
form cm (product up to âm). A factor can be given to ƒ so that c== 1. 

For n = 1, that is, a unicursal curve, [a(f)] is a product of determi­
nants. 

If am+i= • • • = a n = 0 is composed of several rational varieties, 
[a] equals the product of the corresponding cross ratios. For m = 0 
this is again the final formula of 2.1. 

2.6. Permutation. For a permutation of sign ± 1 , 2.1 and 1.6 give 
a' = (±Pi). 

2.7. Variation. By 2.1 and 1.7, [ • • • , ak+ Xa;-, • • • ] = [a], 
2.8. Linear combination. By 2.7 and 2.2, [a']= [l]Uk*[a]. 

3. Generalized cross ratio and intersection. 3.1. DEFINITION. If 
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a0, • • • , an are quantics of positive degree, except a&, which is 
a quotient &&:c& of quantics of positive degree, we may, in agree­
ment with 1.3, define [a] as [#o, • • • , dk-i, bk, 0/fc+i, * ' ' > #n] 
: [a0, • • • , ajb-i, ck, a*+i> • * * » 0 n ] , a n d ^bk'.\ck, X>0, will give the 
same value. Likewise, if every a* is a homogeneous rational function 
&/c'£fc, [a] is defined as quotient of products of 2n resultants. This 
"resultant of rational functions" we call also cross ratio of the corre­
sponding n + 1 pairs of hypersurfaces bk = 0 and Ck = 0.* I t may be 
0, oo, or indeterminate. Artificial indétermination, due to the choice 
of X, must be avoided. 

The intersection may equally be defined for rational functions, in 
agreement with 2.3, by admitting negative multiplicities of points P*, 
or, in case all multiplicities are 0, a number without point. And the 
notions of resultant and intersection remain linked by the relation 
[a0, a ] = a 0 ( [ # ] ) . Here, for â0 = 5o — êo = 0, every factor ao(P») equals 
dildy if Pi is on the curve eib0—diCo = 0 of the pencil (bo, c0), di and d 
being constants. 

3.2. Degree. \a] is of degree JJ^â in the coefficients of &&, and of 
degree —IJ&â in the coefficients of Ch\ so we can again write [a] = I I â . 
The same statements hold for an intersection [a] of pairs of hyper­
surfaces. 

3.3. Multiplication. Again, for cross ratios and intersections, 
[ • • • >IL • • • ] = I I [ ] ; and for both, [ • • • , Ua*, • • • ] = l :[f l] . 

3.4. Special cases. No bh or c& is allowed to be congruent to 0. 
In the monomial case, the relations of 1.4 and 2.4 subsist. 
If dk — Oy [a] is of degree 0 in the coefficients of all other quantics; 

if âj = âk = 0, [a] depends only on the situation of the given hyper-
surfaces.6 In this case, by 3.1, the cross ratio [a] is a product of "cross 
ratios ak(Pi'*Qi) = a&(Pt) *.#&((?;) of a pair of points and a pair of hy­
persurfaces of equal degree," another situational invariant.7 As 
bk(Pi'.Qi) is the ratio of the first and last coefficient of z in 
bk(zoPi+ZiQi), that is, the product of the ratios — Ziizo correspond­
ing to the meets of bk = 0 with the line PiQi, we see that ak{P%'*Q%) 
equals a product of ordinary cross ratios on PiQi, each of which is 
determined by a meet of bk = 0 and a meet of ck = 0. 

For cross ratios and intersections with constant akf [a] = ak
Ukd, 

and with constant a ƒ and ak, [a] = l. Thus, in contrast to 1.1, the 
5 Or of the virtual hypersurfaces au—O, van der Waerden, Algebraïsche Geometrie, 

1939, p L 179. 
6 If bk>0} Ck>0, we can at tain âk — O by replacing bh and Cu by their own powers. 
7 Special cases of which are the ratio in Newton's theorem on algebraic curves, 

and, passing to the logarithms, the angle, and Laguerre's "orientation." 
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resultant of quantics of non-negative degree may be reducible; and 
it may be equal to 0 even if an XT*0 with a(x) = 0 exists, which hap­
pens if there are 2 or more constant a*, all of them equal to 0 (this 
case, it is true, has been excluded). Yet, in formal developments, we 
shall admit either or both 5* = 0 and c& = 0, so we may assume bk and Ck 
without a common factor of positive degree. 

3.5. Rational transformation. The relations of 1.5 and 2.5 subsist. 
We see that, for JJö = 0, the cross ratio and intersection are projective 
invariants. They are not invariant to dualization, common points 
occurring without common tangents and vice versa. 

For a general (not necessarily regular) rational transformation and 
âo — 0, a0(Pi) in 3.1 remains unaltered ; thereby the change of the cross 
ratio and the intersection can be obtained. 

Rational variety. The conclusions of 2.5 subsist; hence, f o r I J â = 0, 
[a] = [#(ƒ)]. For a unicursal curve ƒ(/) with inhomogeneous /, met by 
&o = 0, CQ = 0, &I = 0, CI = 0 respectively in the systems of points 
ƒ(/30), ƒ(70), / ( f t ) , ƒ(71) or, admitting negative multiplicities, by a0 = 0 
and ai = 0 (of degrees 0) in f(a0) and f(ai), we obtain [a]~ao—ai 
= (00-/31)(70—71)• (j8o~7i)(7o— ft) where jSo-jSi, and so on, denote 
products of differences. For a line and hocobici = 1, this is the ordinary 
cross ratio. 

I t would be interesting to know whether similar laws hold for non-
unicursal curves. 

3.6. Permutation. The relations of 1.6 and 2.6 subsist. Interchang­
ing of bk and c* gives, by 3.3, the reciprocal value (or negative multi­
plicities). All other permutations may change more than the sign 
of [a], or the sign of the multiplicities. Thus a cross ratio in {n — 1)-
space, or an intersection in w-space, # > 1 , has not (2n)\ but (gen­
erally) iV=(2w)!:w!2w = l -3 • • • ( 2 n - l ) values, and with the re­
ciprocals 2N values. Change of sign occurs only if among the In hy-
persurfaces there are n of even and n of odd degree; these must be 
combined in pairs, which can be done in n\ ways, so in this case, 
together with the opposites, there are respectively N+nl or 2N+2n\ 
values. 

But the N values are not independent, the number of resultants (or 
intersections) being only C2ntn=s(2n)l:nl2

9 tha t is, 6, 20, 70, 252, 
924, 3432, 12870, 48620, • • - instead of 3, 15, 105, 945, 10395, 
135135, 2027025, 34459425, • • - . Moreover, a depends only on the 
C2n,n — 1 ratios of resultants, and for odd n only on the C2n,n'2 
ratios of a resultant of certain hypersurfaces and that of all other 
hypersurfaces. 

The true sequence of numbers of independent values begins 
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2, 5, 14, • • • as seen below. The quantics will be denoted by 
1, 2, • • • , In, Cross ratios and intersections are denoted as in the 
following example. If the given [a] is [2:7, 3:5, 6 :1 , 4 :8] , we bring 1 
to the first place : ± 1 : [a] = [1:6, 2:7, 3:5, 4 :8] . In the second place 
we see 6, which is the 5th number after 1 ; so we begin our symbol 
by 5. The remaining numbers 234578 are now ordered cyclically, be­
ginning after 6, that is, with 7. 7 is brought to the next place, and we 
write ± a = [1:6, 7:2, 3:5, 4 :8 ] . The figure after 7, that is, 2, is the 
second in cyclic order; our symbol begins therefore 62. 3 is already in 
the proper place, 5 is second among 458; hence (622). 8 is not in its 
place, so ± l : [ a ] = (622). 

w = 2. We have (1)= [1:2,3:4] =[13] [24]: [14] [23], (2) = [1:3, 4 :2] , 
(3) == [1:4, 2^3]. Multiplying, we get A: (1)(2)(3) = ( - 1 ) to the power 
(2) (3) + (2) (4) + (3) (4), hence there are 2 independent values.8 

w = 3. Permuting 345 cyclically, we have, as before, A : (11) (12) (13) 
= ± 1 . 234 gives B: (11)(23)(31) = ± 1 . 235 gives (12)(23)(43) = ± 1 , 
which follows also from the two preceding types A and B ("types" 
means that the first figures of the symbols may be replaced by their 
cyclic successors). So the 5 values (71) determine the others; they are 
independent, as, for example, (11) contains [145] which occurs in no 
other (71). 

w = 4. 234 gives C: (111)(251)(311) = ± 1 . 235 gives (123)(221)(451) 
= ± 1 , or, by B and C, D: (221) = ±(111)(131)(311)(511). 236 gives 
(131)(213)(511)=±1, or, by B and C, again D. 237 gives 
(143)(212)(651)=±1, or, by ABC, again D. Finally, 246 gives 
(123)(353)(512) = ± 1 , or, by ABC, a relation E containing (341). 
By C, D, E respectively, all (S51), (521), (541) are expressed by the 
14 values (811), (831). These are independent, as, for example, (131) 
contains [1567] which occurs in no other (331) or (511), and (111) 
contains [1457] which occurs in no other (511). 

Every relation for [a] and its permutations holds also if one of the 
quantics is 1, that is, for In-— 1 hypersurfaces.9 The converse is easily 
seen to be true for relations derived by cyclic permutation of 3 
quantics, and 1.6, 2.6 and 3.3. Under the same, perhaps void, re­
striction the same relations hold for the values [a] formed by 2n — 2 

8 The relation [l :2, 3:4] + [l :3, 2:4] = 1 by which the 2iV=6 values of the ordi­
nary cross ratio are shown to be functions of one of them—and which is equivalent 
to the additivity of linear measure—ceases to hold, for example, for squares of linear 
forms. Likewise, for general w, there hold special relations in the linear case, reducing 
the above sequence to that of squares 1, 4, 9, • • • . A, Bt and so on, and the effect 
of interchanging bk and c*, are cases of logarithmic antisymmetry. 

9 A for n = 3 and the last quantic equal to 1 is the extension of Carnot's theorem 
given in my paper loc. cit. p. 976. 
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of 2n — 1 given hypersurfaces, the dimension of space having been 
diminished by 1. 

3.7. Variation, [a] remains unchanged if bk is replaced by &&+X&jC,-, 
or Ck by Cfc+X&jCj. Hence [a] is determined if, in case 5^5,-+J,-, in­
stead of bk, only the intersection of &*? = () with bjCj — 0 (and thereby 
also hk) is known. Cf. the end of 3.1, and of 3.5. 

In some cases the cross ratio [a0, a] is quite independent of a0 (of 
a given degree).10 By 3.1, this happens if, and only if, all multiplicities 
of the points Pi of [a] are equal to 0, that is, if every meet of n hyper­
surfaces, one of each pair, belongs to a further hypersurface, for ex­
ample, in the linear combination case 3.8. 

Already for n = 2 this is not the only case of constant [l, a]. Let 
bu Ciy #2, c%—no two of which shall have a common factor of positive 
degree—have p^O common points, and &i, Ci, &2 have 72 additional 
common points, and define j8i, 71, /32 similarly. Then, of course, 
5iCi^£+/32+72 and 5 analogous inequalities hold, of which—by the 
before-said—4 are equations if, and only if, [l,a] is constant. The 4 
equations give H a = 0 (as stated before); let ai = 0, so that 5i = ci, 
ft=71, and 72—ft = 5iâ2, which may be assumed not less than 0. 
hu Ô2, 02, p, ft, ft are connected by (1) 5 i 2 ^£ + 2ft+5i<Z2, (2) 
C22 + c2a2^p+2Pi, (3) hiC2=p+(3i+P2- Eliminating p, there remains 
(4) 0, I1C2 — âic2— C22+Pi^t32^hiC2—ft, &12 — 5iâ2 — hc2+Pi> Eliminat­
ing ft, we have (5) 0, 5i<Î2+5iC2--5i2^ft^5iC2, (â2+c2)c2/2 and 
(Si—c2)â2^(5i—C2)2,11 that is, either 5 1 : â2^5i—-c2, which may be 
written C2 S h Û 5i, or 52 : ö2 ̂  5i ̂  £2, which may be written 52 — £2 S ii 
^£2^82 («2^5i follows by eliminating ft, or from (1), except for 
5i = £i = 0, a linear combination case). In both cases, the inequality 
(6) 5iâ2+5iC2 —5i2^ (âiC2+C22)/2 is automatically fulfilled : for 51 this 
is obvious, for 52 we write (6) (25i — £2)02 â 5i2 + (5i — öO2, the left side, 
if greater than 0, being not greater than (25i— C2)l\ not greater than 
the right side. 

For given 5i, £2, we now may choose Â2>0 according to 51 or 52, 
or S3: Ü2 = 0, with 5i>C2, or 54 : #2 = 0, 5i=C2', then ft according to 
(5), which in cases 51 , S3, 54 reduces to 0^f t^ (a i+£2)^2 /2 ; then 
ft according to (4), which in case 54 reduces to ft=ft>0 (for ft = 0 
we have a linear combination case) ; then p by (3), I2,72. S3 and 54 are 
the situationally invariant cases. Arranging by ascending max(5i, c2), 
the table of "nonlinear-combination-cases" begins 

10 By 3.3 it is necessary and sufficient for this, that it be so for a linear form do = 1. 
By 3.2 there must beXIa = 0. If the cross ratio is 1, it is also independent of a0. 

11 Also immediately as (l) + (2)-2(3). 
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All 10 cases A, • • • , / , containing only lines and conies, are realiza­
ble. Of the 4 situationally invariant cases E, F, I, J , the latter con­
cerns 4 conies in the position described by the theorem : 

Of 4 given pairs of points every 3 pairs are on a conic if, and only if, 
either (1) all 4 pairs are on a conic, or (2) a point and a line harmonic 
to the 4 pairs exist. 

Indeed, let Bi, C\, B%, C2 be pairs of points, and B1C1B2 on a conic c2, 
and so on. Choose C2 = (/, / ) , then b\, C\, &2 are circles. If they coincide, 
we have case (1) ; otherwise Bi, &, £2 are pairs of inverse points for a 
certain circle 0. If O is a line, we have case (2) ; otherwise, in the inver­
sion at 0, ci becomes a quartic c{, meeting C2 a t Bi9 Ci, £2 a n d in 4 
points of 0, which is impossible.12 

F (on a pair of conies intersecting in 4 points A BCD and the pair 
of lines AB, CD) is a case of cross ratio 1, for the cross ratio is the 
same for all pairs of conies, as it cannot become 0 (or 00), and equals 
1 for coinciding conies; for two circles, F becomes the theorem of the 
radical axis. E concerns two conies as in F and the lines A B, A C; by a 
limiting case of F, either conic may be replaced by BC and its tangent 
a t A, so the fixed cross ratio equals that of AB, AC and the two tan­
gents. I yields a theorem on 4 circles, which by inversion becomes the 
statement that a variable circle is met by a fixed triangle and its 
circumcircle in a constant cross ratio. 

3.8. Linear combination. 1.8 and 2.8 extend to the case where the 
unaltered ak are rational functions. 

12 The non-existence of C2, in this case, is also easily proved algebraically, or by 
remarking that the directions of its axes would have to be harmonic to any 2 of the 3 
lines through 0 and Bh d, J32. 
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If m + 1 >0 quantics bk are linear forms fik of m + 1 quantics dk, and 
if the corresponding ck are also linear forms jk of dh, then by repeated 
application of 1.8, or 2.8, we have [a]= [a]11**, where ak—fik^yk-
In particular we mention that (a) two pairs of hypersurfaces belong­
ing to a pencil are met by every line in the same cross ratio (and by 
any other curve in a power of that cross ratio)—a generalization of a 
fundamental theorem of projective geometry—and this cross ratio is 
a projective invariant; (b) n pairs of hyperplanes through a point 
are cut by every hyperplane in the same cross ratio. 

The cross ratio of n + 1 pairs of hyperplanes, or points, considered 
as function of one of them, is a quotient of two quantics of degree 
2n_1, and constant on a hypersurface of degree 2n_1. For n = 2, the 
cross ratio of 3 pairs of points, or lines, is 1 if, and only if, they are 
on a conic, which is the fact underlying the projective generation of 
conies. For general n, the cross ratio oln + 1 points a and of the funda­
mental points is 1 if, and only if, the product of the coaxial minors of 
even degree of a equals that of those of odd degree. For w = l, this 
leads tow = 0. 
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