SOLUTION OF A CLASS OF SINGULAR INTEGRAL EQUATIONS

ERIC REISSNER

The following class of integral equations may be of some importance in the applications:

$$
\begin{equation*}
g(x)=\frac{1}{\pi} \oint_{-1}^{1} f(\xi)\left\{\frac{1}{\xi-x}+\sum_{n=0}^{N} c_{n}(\xi-x)^{2 n+1}\right\} d \xi \tag{1}
\end{equation*}
$$

The symbol \varnothing indicates that the principal value of the integral is to be taken and the coefficients c_{n} are given constants. The special case of all $c_{n}=0$ has been dealt with extensively, for instance by Glauert [1], Fuchs [2], Hamel [3], Schroeder [4] and Söhngen [5]. ${ }^{1}$ The values of the coefficients c_{n} might be determined by the condition that a given kernel $K(\xi-x)$, for instance $K=1 / \sinh (\xi-x)$, is approximated as nearly as possible by the kernel of equation (1).

The purpose of the present note is to derive the solution of (1) for a finite number of nonvanishing c_{n}. The method of solution is an extension of the method applicable when all $c_{n}=0$.

Equation (1) is first transformed by the substitutions

$$
\begin{align*}
x & =\cos \phi, & \xi & =\cos \theta \tag{2}\\
g(x) & =G(\phi), & f(\xi) & =F(\theta) \tag{3}
\end{align*}
$$

into

$$
\begin{equation*}
G(\phi)=\frac{1}{\pi} \oint_{0}^{\pi} F(\theta)\left\{\frac{1}{\cos \theta-\cos \phi}+\sum_{n=0}^{N} c_{n}(\cos \theta-\cos \phi)^{2 n+1}\right\} \sin \theta d \theta . \tag{4}
\end{equation*}
$$

The function $G(\phi)$ is thought to be developed in the interval $(0, \pi)$ in the following form :

$$
\begin{equation*}
\sin \phi G(\phi)=\sum_{m=1}^{\infty} B_{m} \sin m \phi \tag{5}
\end{equation*}
$$

It is then to be shown that the following representation of $F(\theta)$

$$
\begin{equation*}
\sin \theta F(\theta)=\sum_{m=0}^{\infty} A_{m} \cos m \theta \tag{6}
\end{equation*}
$$

permits the explicit determination of the unknown coefficients A_{m} in

Received by the editors May 5, 1945.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.
terms of the known coefficients B_{m} and c_{n}.
Substituting equations (5) and (6) in equation (4) there occur these integrals

$$
\begin{equation*}
\frac{1}{\pi} \oint_{0}^{\pi} \frac{\cos m \theta d \theta}{\cos \theta-\cos \phi}=\frac{\sin m \phi}{\sin \phi}, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{\pi} \cos m \theta(\cos \theta-\cos \phi)^{2 n+1} d \theta=\sum_{k=1}^{2 n+2} D_{k}(m, n) \frac{\sin k \phi}{\sin \phi} . \tag{8}
\end{equation*}
$$

Equation (7) may be found in reference [1]. The validity of equation (8) with suitable coefficients D_{k} follows from the fact that its left side may be written as a polynomial of degree $2 n+1$ in $\cos \phi$ and therefore also as a series of the form $\sum_{j=0}^{2 n+1} a_{j} \cos j \theta$. It is important to note that the coefficients D_{k} satisfy the following conditions,

$$
\begin{equation*}
D_{k}(m, n)=0, \quad m=2 n+2,2 n+3, \cdots ; k=2 n+3,2 n+4, \cdots \tag{9}
\end{equation*}
$$

On the basis of equations (5) to (8) equation (4) takes on the form

$$
\begin{equation*}
\sum_{m=1}^{\infty} B_{m} \sin m \phi=\sum_{m=1}^{\infty} A_{m}\left\{\sin m \phi+\sum_{n=0}^{N} c_{n}\left[\sum_{k=1}^{2 n+2} D_{k}(m, n) \sin k \phi\right]\right\} \tag{10}
\end{equation*}
$$

This is equivalent to the following set of simultaneous equations for the quantities A_{m},

$$
\begin{equation*}
B_{j}=A_{j}+\sum_{m=1}^{\infty} A_{m}\left\{\sum_{n=0}^{N} c_{n} D_{j}(m, n)\right\}, \quad j=1,2, \cdots \tag{11}
\end{equation*}
$$

But in view of equations (9) the system (11) may be written as

$$
\begin{array}{ll}
B_{j}=A_{j}, & j=2 N+3,2 N+4, \cdots, \\
B_{j}=A_{j}+\sum_{m=1}^{2 N+1} A_{m}\left\{\sum_{n=0}^{N} c_{n} D_{j}(m, n)\right\}, \quad j=1,2, \cdots, 2 N+2 \tag{12}
\end{array}
$$

Thus, it remains to solve a simultaneous system of $2 N+2$ equations for the $2 N+3$ unknowns $A_{0}, A_{1}, \cdots, A_{2 N+2}$. In analogy to the procedure when all $c_{n}=0$ we may express $A_{1}, \cdots, A_{2 N+2}$ in terms of A_{0} and leave A_{0} arbitrary or determine it by an extraneous condition such as for instance $F(0)=\sum_{0}^{\infty} A_{m}=0$.

It is to be underlined that the above reduction of the problem to a system of simultaneous equations for a finite number of unknowns depends on the fact that the regular part of the kernel in equation (1) consists of a polynomial and not of an infinite series. It is further to be noted that there may be critical values of the coefficients c_{n} for
which equations (12) have a solution only if certain relations between the quantities B_{j} hold.

The following example may illustrate the foregoing results. Taking $N=1$ one finds, in this special case most easily directly from equations (4) to (7), that equations (12) become

$$
\begin{align*}
& B_{1}=\left(1+\frac{c_{0}}{2}+\frac{3 c_{1}}{4}\right) A_{1}+\frac{c_{1}}{8} A_{3}, \\
& B_{2}=\left(1-\frac{3 c_{1}}{8}\right) A_{2}-\left(\frac{c_{0}}{2}+c_{1}\right) A_{0}, \tag{13}\\
& B_{3}=A_{3}+\frac{3 c_{1}}{8} A_{1}, \quad B_{4}=A_{4}-\frac{c_{1}}{8} A_{0}, \quad B_{j}=A_{j}, j=5,6, \cdots .
\end{align*}
$$

Solving for A_{j}, we obtain

$$
\begin{align*}
& A_{1}=\frac{B_{1}-c_{1} B_{3} / 8}{1+c_{0} / 2+3 c_{1} / 4-3 c_{1}^{2} / 64}, \quad A_{2}=\frac{B_{2}+\left(c_{0} / 2+c_{1}\right) A_{0}}{1-3 c_{1} / 8} \\
& A_{3}=\frac{\left(1+c_{0} / 2+3 c_{1} / 4\right) B_{3}-3 c_{1} B_{1} / 8}{1+c_{0} / 2+3 c_{1} / 4-3 c_{1}^{2} / 64} \tag{14}\\
& A_{4}=B_{4}+\frac{c_{1}}{8} A_{0}, \quad A_{5}=B_{5}
\end{align*}
$$

and so on.
Evidently, exceptional conditions exist when one or both denominators in equation (14) have the value zero. The meaning of this occurrence is that under those circumstances equation (4) has solutions of one or both of the forms $F=\cos 2 \theta / \sin \theta, F=(\cos \theta-\alpha \cos 3 \theta) / \sin \theta$ when $G=0$.

References

1. H. Glauert, Aerofoil and airscrew theory, New York, 1943, pp. 87-93.
2. R. Fuchs, Theorie der Luftkräfte, Berlin, 1935, pp. 54-60.
3. G. Hamel, Integralgleichungen, Berlin, 1937, pp. 145-148.
4. K. Schröder, Über eine Integralgleichung erster Art der Tragflïgeltheorie, Preussischen Akademie der Wissenschaften, 1938, pp. 345-362.
5. H. Söhngen, Die Lösungen der Integralgleichung $g(x)=1 / 2 \pi \oint_{-1}^{1} f(\xi) /(x-\xi) d \xi$ und deren Anwendung in der Tragflügeltheorie, Math. Zeit. vol. 45 (1939) pp. 245-264.

Massachusetts Institute of Technology

