ON GENERA OF BINARY QUADRATIC FORMS

IRVING REINER

Let $\beta=a x^{2}+2 b x y+c y^{2}$ be a properly primitive form with integral coefficients, and let the determinant $D=a c-b^{2}$ be written as $D= \pm 2^{\circ} \Delta$, where Δ is odd and positive, and the factorization of Δ into distinct primes is $\Delta=q_{1}{ }^{\alpha_{1}} \cdots q_{r}{ }^{\alpha_{r}}$. Let us suppose that a is positive and prime to $2 D$. The genus of β is then completely determined by the Legendre symbols $\left(a \mid q_{1}\right), \cdots,\left(a \mid q_{r}\right)$, and $(-1 \mid a)$ if $D \equiv 0$ or $1(\bmod 4),(2 \mid a)$ if $D \equiv 0$ or $6(\bmod 8)$, and $(-2 \mid a)$ if $D \equiv 0$ or 2 $(\bmod 8) .{ }^{1}$ These characters are not independent, however, since $-D=b^{2}-a c$ and $(a, b)=1$ imply that $(-D \mid a)=1$; from this, using the law of quadratic reciprocity, we get

$$
\begin{aligned}
1=(-D \mid a) & =(2 \mid a)^{s}(a \mid \Delta)(-1)^{(a-1)(\mp \Delta-1) / 4} \\
& =\epsilon \cdot\left(a \mid q_{1}\right)^{\alpha_{1}} \cdots\left(a \mid q_{r}\right)^{\alpha_{r}}
\end{aligned}
$$

where

$$
\epsilon=(2 \mid a)^{s}(-1 \mid a)^{(\mp \Delta-1) / 2}
$$

is a character or is trivially +1 . Thus, the characters of any existing genus must satisfy

$$
\begin{equation*}
\epsilon \cdot\left(a \mid q_{1}\right)^{\alpha_{1}} \cdots\left(a \mid q_{r}\right)^{\alpha_{r}}=+1 \tag{1}
\end{equation*}
$$

Conversely, given any set of characters satisfying (1), a long but elementary proof showing the existence of the corresponding genus was given by Gauss, ${ }^{2}$ who used the method of composition of forms; he also demonstrated by this means that all existing primitive genera of the same determinant contain the same number of classes. ${ }^{2}$ Elementary proofs were also given by Hilbert for the analogous case of ideal classes in quadratic fields. ${ }^{3}$ The purpose of this paper is to furnish, by use of Dirichlet's theorem on the infinitude of primes in an arithmetic progression, simple proofs of the results mentioned above for forms with integral coefficients. These may be stated precisely as follows:

Theorem 1. For any preassigned set of characters satisfying (1), there exists a genus with the given characters.

[^0]Theorem 2. All existing properly primitive genera of binary quadratic forms of a given determinant contain the same number of classes.

Remark. The proofs given in this paper may easily be extended to the case of primitive forms with odd middle coefficient.

For the proof of Theorem 1, we observe that by Dirichlet's theorem, a prime a may be found such that $(a, 2 D)=1$ and the set of Legendre symbols $\left(a \mid q_{1}\right), \cdots,\left(a \mid q_{r}\right)$ and $(-1 \mid a)$ or $(2 \mid a)$ or $(-2 \mid a)$ (or combinations of the last three symbols, depending on the value of D) coincide with the preassigned set of values of the characters. (1) then implies that $(-D \mid a)=+1$, whence there exists an integer b for which $b^{2} \equiv-D(\bmod a)$, that is, $-D=b^{2}-a c$ with integral a, b and c; the form $a x^{2}+2 b x y+c y^{2}$ then has the preassigned characters.

The proof of Theorem 2 will proceed as follows: Let $\beta_{1}, \cdots, \beta_{k}$ be nonequivalent representative forms of the classes in a given genus β, and let $\phi_{1}, \cdots, \phi_{k^{\prime}}$ be the forms of another given genus ϕ, both genera having the same determinant. It is sufficient to show that we can find a transformation taking the β_{i} into the ϕ_{j}, and that no two of the ϕ_{j} thus obtained are equivalent. In that case $k^{\prime} \geqq k$. By reversing the process, we shall have $k \geqq k^{\prime}$, from which it will follow that $k=k^{\prime}$, which gives the theorem.

The following will be shown :
A. Starting with a form β of a given genus, it can be transformed into a form $p \phi$, where ϕ is a form in another given genus of the same determinant as β, and where p is a prime determined by the genera β and ϕ.
B. If from β_{1} and β_{2} we get forms ϕ_{1} and ϕ_{2}, then $\phi_{1} \sim \phi_{2}$ implies $\beta_{1} \sim \beta_{2}{ }^{4}$

Let the given form be $\beta=a x^{2}+2 b x y+c y^{2}$, and set $a c-b^{2}=D$ $= \pm 2^{s} \Delta$ as before. Let p be a prime such that $(p, 2 a D)=1$ and $(-D \mid p)=1$. Then there exist integers x and y, with $y \neq 0(\bmod p)$, such that

$$
(a x+b y)^{2} \equiv-D y^{2}(\bmod p)
$$

Hence there exists an integer r for which

$$
a r^{2}+2 b r+c \equiv 0(\bmod p)
$$

The transformation J :

$$
x \rightarrow p x+r y, \quad y \rightarrow y
$$

[^1]of determinant p takes β into $p \psi$, where
$$
\psi=a p x^{2}+2(a r+b) x y+d y^{2}
$$
and d is an integer; it is clear that β and ψ have the same determinant.
Let $\phi=a^{\prime} x^{2}+2 b^{\prime} x y+c^{\prime} y^{2}$ be a form of another given genus of the same determinant as β. If we show that p can be chosen so that $\psi \mathrm{v} \phi,{ }^{5}$ we shall have proved A. Since β and ϕ are representatives of classes of properly primitive forms, and in every such class there is a form with leading coefficient odd and prime to the determinant of the form, ${ }^{6}$ we may take $(a, 2 D)=\left(a^{\prime}, 2 D\right)=1$. If the following relations are satisfied it will follow that $\psi \mathrm{v} \phi$, for their generic characters will be the same.
\[

$$
\begin{align*}
\left(a p \mid q_{1}\right) & =\left(a^{\prime} \mid q_{1}\right), \cdots,\left(a p \mid q_{r}\right)
\end{align*}
$$=\left(a^{\prime} \mid q_{r}\right), ~ 子, ~(2 \mid a p)=\left(2 \mid a^{\prime}\right) .
\]

From these we may conclude that $(-D \mid a p)=\left(-D \mid a^{\prime}\right)$. Since $(-D \mid a)=\left(-D \mid a^{\prime}\right)=1$, this means that $(-D \mid p)=1$. Hence, if we choose a prime p which satisfies (2) and is prime to $2 a D$ (this is possible by Dirichlet's theorem), then there exists a transformation J taking β into ϕ. This completes the proof of A.

To prove B , let $\beta_{1} \vee \beta_{2}$; we may choose $\beta_{1} \equiv \beta_{2}(\bmod p)$, for we shall show that there exists a form in the class of β_{2} which is congruent $(\bmod p)$ to β_{1}. To show this, it is sufficient to show that by a transformation of determinant $+1, \beta_{2}$ may be taken into a form congruent to β_{1}. Let

$$
\begin{equation*}
\beta_{1}=a_{1} x^{2}+2 b_{1} x y+c_{1} y^{2}, \quad \beta_{2}=a_{2} x^{2}+2 b_{2} x y+c_{2} y^{2} \tag{3}
\end{equation*}
$$

where $\left(a_{1}, 2 D\right)=\left(a_{2}, 2 D\right)=1$. If all congruences are modulo p, the congruence

$$
a_{2} \beta_{2} \equiv\left(a_{2} x+b_{2} y\right)^{2}+D y^{2} \equiv a_{1} a_{2}
$$

certainly has a solution with not both x and y congruent to 0 , provided that we impose the restriction $\left(p, 2 a_{1} a_{2} D\right)=1$. Let $x=x_{0}, y=y_{0}$ be such a solution, and choose integers x_{1} and y_{1} such that $x_{0} y_{1}-x_{1} y_{0}$ $=1$. The transformation of determinant +1 :

$$
x \rightarrow x_{0} x+\left(x_{0} t+x_{1}\right) y, \quad y \rightarrow y_{0} x+\left(y_{0} t+y_{1}\right) y
$$

takes β_{2} into a form

$$
\beta_{3}=a_{3} x^{2}+2\left(a_{3} t+b_{3}\right) x y+c_{3} y^{2}
$$

[^2]where $a_{3} \equiv a_{1} \neq 0$. If we choose t so that $a_{3} t+b_{3} \equiv b_{1}$, it is clear from the fact that β_{1} and β_{3} have the same determinant that $\beta_{3} \equiv \beta_{1}(\bmod p)$.

Thus, let $\beta_{2} \equiv \beta_{1}(\bmod p)$, where β_{1} and β_{2} are defined by equations (3). The transformation J obtained for β_{1} may also be used for β_{2}. If now ϕ_{1} and ϕ_{2} are equivalent forms obtained from β_{1} and β_{2} respectively by use of J, and if A takes ϕ_{1} into ϕ_{2}, then $J A J^{-1}$ takes β_{1} into β_{2}. Let

$$
A=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

Then

$$
\begin{aligned}
J A J^{-1} & =\left[\begin{array}{ll}
p & r \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{cc}
1 / p & -r / p \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha+r \gamma / p & -r \alpha-r^{2} \gamma / p+p \beta+r \delta \\
\gamma / p & -r \gamma / p+\delta
\end{array}\right]
\end{aligned}
$$

If we show that p divides γ we are through, since $|A|=1$ implies $\left|J A J^{-1}\right|=1$, whence $\beta_{1} \sim \beta_{2}$. We have

$$
\begin{aligned}
& \phi_{1}=a_{1} p x^{2}+2\left(a_{1} r+b_{1}\right) x y+d_{1} y^{2} \\
& \phi_{2}=a_{2} p x^{2}+2\left(a_{2} r+b_{2}\right) x y+d_{2} y^{2}
\end{aligned}
$$

Since A takes ϕ_{1} into ϕ_{2}, we obtain

$$
\begin{gathered}
a_{1} p \alpha^{2}+2\left(a_{1} r+b_{1}\right) \alpha \gamma+d_{1} \gamma^{2}=a_{2} p \\
a_{1} p \alpha \beta+\left(a_{1} r+b_{1}\right)(\alpha \delta+\beta \gamma)+d_{1} \gamma \delta=a_{2} r+b_{2}
\end{gathered}
$$

If all congruences are modulo p, we have

$$
2\left(a_{1} r+b_{1}\right) \alpha \gamma+d_{1} \gamma^{2} \equiv 0, \quad\left(a_{1} r+b_{1}\right)(\alpha \delta+\beta \gamma)+d_{1} \gamma \delta \equiv a_{2} r+b_{2}
$$

If d is eliminated between these two congruences and the fact that $\alpha \delta-\beta \gamma=1$ is used, it follows that

$$
\gamma\left(a_{1} r+b_{1}\right) \equiv-\gamma\left(a_{2} r+b_{2}\right)
$$

If p does not divide γ, then this shows that $a_{1} r+b_{1} \equiv 0$, since $\beta_{1} \equiv \beta_{2}$. But in this case it follows that $b_{1} r+c_{1} \equiv 0$, by virtue of $a_{1} r^{2}+2 b_{1} r+c_{1}$ $\equiv 0$. Eliminating r between the two congruences, we get $D=a_{1} c_{1}-b_{1}{ }^{2}$ $\equiv 0$, or $(p, D) \neq 1$. Since this is impossible, p must divide γ, and Theorem 2 is proved.

[^0]: Received by the editors February 1, 1945, and, in revised form, August 2, 1945.
 ${ }^{1}$ Mathews, Theory of numbers, Part I, 1927 reprint, p. 134.
 ${ }^{2}$ Gauss, Disquisitiones arithmeticae, arts. 234-265.
 ${ }^{3}$ Hilbert, Jber. Deutschen Math. Verein. vol. 4 (1894-1895) pp. 286-316.

[^1]: ${ }^{4}$ The notation $\phi_{1} \sim \phi_{2}$ will mean that ϕ_{1} is equivalent to ϕ_{2}, that is, there is a transformation with integral elements and of determinant +1 taking ϕ_{1} into ϕ_{2}.

[^2]: ${ }^{5} \phi_{1} \vee \phi_{2}$ means that ϕ_{1} and ϕ_{2} are of the same genus.
 ${ }^{6}$ Mathews, loc. cit. p. 133.

