THE NUMBER OF INDEPENDENT COMPONENTS OF THE TENSORS OF GIVEN SYMMETRY TYPE

RICHARD H. BRUCK AND T. L. WADE

Let $T_{i_{1}} \cdots_{i_{p}}$ be an arbitrary covariant tensor with respect to an n-dimensional coordinate system, and let

$$
\begin{equation*}
T_{i_{1} \cdots i_{p}}={ }_{[p]} T_{i_{1} \cdots i_{p}}+\cdots+{ }_{[\alpha]} T_{i_{1} \cdots i_{p}}+\cdots+{ }_{\left[1^{p}\right]} T_{i_{1} \cdots i_{p}} \tag{1}
\end{equation*}
$$

represent the decomposition ${ }^{1,2}$ of $T_{i_{1}} \cdots i_{p}$ into tensors of various symmetry types, the tensor ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$ corresponding to the partition $[\alpha]$ of the indices $i_{1} \cdots i_{p}$. The number of independent (scalar) components of $T_{i_{1} \ldots i_{p}}$ is n^{p}; and if c_{α} denotes the number of components of ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$, then

$$
\begin{equation*}
n^{p}=c_{[p]}+\cdots+c_{[\alpha]}+\cdots+c_{\left[1^{p}\right]}=\sum c_{\alpha} \tag{2}
\end{equation*}
$$

For $p=2,3,4$, J. A. Schouten ${ }^{3}$ has obtained expressions for the c_{α} 's in terms of n; but the difficulties of his method become great for larger values of p. The purpose of this paper is to present a method of obtaining c_{α} in terms of n from the character table for the symmetric group on p letters.

Associated with the immanant tensor ${ }^{2} I_{(j)}^{(i)} \equiv{ }_{[\alpha]} I_{j_{1} \cdots j_{p}}^{i_{1} \cdots j_{p}}$ we have defined the numerical invariant $r=r_{\alpha}$, the rank^{4} of $I_{(j)}^{(i)}$, which is the greatest integer r for which the tensor

$$
I_{\left(j_{1}\right) \cdots\left(j_{r}\right)}^{\left(i_{1}\right) \cdots\left(i_{r}\right)}=\left|\begin{array}{cccc}
I_{\left(j_{1}\right)}^{\left(i_{1}\right)} & \cdots & I_{\left(j_{r}\right)}^{\left(i_{1}\right)} \tag{3}\\
\cdot & \cdots & \\
I_{\left(j_{1}\right)}^{\left(i_{r}\right)} & \cdots & I_{\left(j_{r}\right)}^{\left(i_{r}\right)}
\end{array}\right|
$$

does not vanish; here $\left(i_{\lambda}\right)=i_{\lambda_{1}} \cdots i_{\lambda p}$. For convenience, let us regard $I_{(j)}^{(i)}$, for each (i, as a vector $V_{(j)}$ in $N=n^{r}$ dimensions. Then from the above definition, it is clear that exactly r_{α} of the N vectors $V_{(j)}$ are linearly independent. Since ${ }_{[\alpha]} T_{(j)} \equiv{ }_{[\alpha]} T_{j_{1} \ldots j_{p}}$ may be defined by

$$
\begin{equation*}
{ }_{[\alpha]} T_{(j)}={ }_{[\alpha]} I_{(j)}^{(l)} T_{(l)} ; \tag{4}
\end{equation*}
$$

[^0]exactly γ_{α} of the components of $T_{(j)}$ are linearly independent; thus $c_{\alpha} \leqq r_{\alpha}$. But as an alternative way of writing equation (32), B.T.A. II,
\[

$$
\begin{equation*}
n^{p}=r_{[p]}+\cdots+r_{[\alpha]}+\cdots+r_{\left[1^{p}\right]}=\sum r_{\alpha} \tag{5}
\end{equation*}
$$

\]

Hence, using (2),

$$
\begin{equation*}
n^{p}=\sum c_{\alpha} \leqq \sum r_{\alpha}=n^{p} \tag{6}
\end{equation*}
$$

and since the numbers c_{α}, r_{α} are non-negative we conclude this fact.
Theorem I. $c_{\alpha}=r_{\alpha}$.
Combining Theorem I with Theorem V, B.T.A. II, we obtain this theorem.

Theorem II.

$$
c_{\alpha}=\frac{f_{\alpha}}{{ }_{p}!} \sum_{(\rho)} \chi_{\alpha}^{(\rho)} \cdot \nu_{\rho} n^{k \rho},
$$

where $\chi_{\alpha}^{(\rho)}$ is the characteristic for class (ρ) corresponding to the irreducible representation $[\alpha]$ of the symmetric group on p letters,
f_{α} is the characteristic corresponding to the class $\left(1^{p}\right)$,
ν_{ρ} is the order of class (ρ),
$k_{\rho}=\rho_{1}+\rho_{2}+\cdots+\rho_{p}$, where $\rho=\left(1^{\rho_{1}}, 2^{\rho_{2}}, \cdots, p_{p}\right)$.
Another method of finding c_{α} is given by G. de B. Robinson ${ }^{5}$ in relating r_{α} to A . Young's substitutional analysis.

For $p=4$ the character table is, ${ }^{6}$ with the additional row of values of k_{ρ} inserted:

Class:	(ρ)	$\left(1^{4}\right)$	$\left(1^{2}, 2\right)$	$(1,3)$	(4)	$\left(2^{2}\right)$
Order:	v_{ρ}	1	6	8	6	3
	k_{ρ}	4	3	2	1	2
	$[4]$	1	1	1	1	1
	$[3,1]$	3	1	0	-1	-1
	$\left[2^{2}\right]$	2	0	-1	0	2
	$\left[2,1^{2}\right]$	3	-1	0	1	-1
	$\left[1^{4}\right]$	1	-1	1	-1	1

From this, using Theorem II, we have, for example

[^1]\[

$$
\begin{aligned}
c_{[4]}= & (1 / 4!)\left\{1 \cdot 1 \cdot n^{4}+1 \cdot 6 \cdot n^{3}+1 \cdot 8 \cdot n^{2}+1 \cdot 6 \cdot n+1 \cdot 3 \cdot n^{2}\right\} \\
& =C_{n+3 \cdot 4}
\end{aligned}
$$
\]

and

$$
\begin{aligned}
c_{[3,1]} & =(3 / 4!)\left\{3 \cdot 1 \cdot n^{4}+1 \cdot 6 \cdot n^{3}+0 \cdot 8 \cdot n^{2}-1 \cdot 6 \cdot n-1 \cdot 3 \cdot n^{2}\right\} \\
& =9 C_{n+2,4} .
\end{aligned}
$$

In this manner we obtain the following tables of c_{α} :
Three-indexed tensors

$[\alpha]$	$[3]$	$[2,1]$	$\left[1^{3}\right]$
c_{α}	$C_{n+2,3}$	$4 C_{n+1,3}$	$C_{n, 3}$

Four-indexed tensors

Five-indexed tensors

$[\alpha]$	$[5]$	$[4,1]$	$[3,2]$	$\left[3,1^{2}\right]$	$\left[2^{2}, 1\right]$	$\left[2,1^{3}\right]$	$\left[1^{5}\right]$
\boldsymbol{c}_{α}	$C_{n+4,5}$	$16 C_{n+3,5}$	$5 n C_{n+2,4}$	$36 C_{n+2,5}$	$5 n C_{n+1,4}$	$16 C_{n+1,5}$	$C_{n, 5}$

Six-indexed tensors

$[\alpha]$	$[6]$	$[5,1]$	$[4,2]$	$\left[4,1^{2}\right]$	$\left[3^{2}\right]$	$[3,2,1]$
c_{α}	$C_{n+6,6}$	$25 C_{n+4,6}$	$(27 n / 2) C_{n+3,5}$	$100 C_{n+3,6}$	$(5 / 3) C_{n+2,4} C_{n+1,2}$	$(128 n / 3) C_{n+2,5}$
	$[\alpha]$	$\left[3,1^{3}\right]$	$\left[2^{3}\right]$	$\left[2^{2}, 1^{2}\right]$	$\left[2,1^{4}\right]$	$\left[1^{6}\right]$
	c_{α}	$100 C_{n+2,6}$	$(5 / 3) C_{n+1,4} C_{n, 2}$	$(27 n / 2) C_{n+1,5}$	$25 C_{n+1,6}$	$C_{n, 6}$

University of Wisconsin and University of Alabama

[^0]: Presented to the Society, November 22, 1941 under the title The number of independent components of the tensor ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$; received by the editors November 19, 1942.
 ${ }^{1}$ H. Weyl, The classical groups, Princeton, 1939, chap. IV.
 ${ }^{2}$ T. L. Wade, Tensor algebra and Young's symmetry operators, Amer. J. Math. vol. 63 (1941) pp. 645-657.
 ${ }^{3}$ J. A. Schouten, Der Ricci-Kalkul, Berlin, 1924, chap. VII.
 ${ }^{4}$ Richard H. Bruck and T. L. Wade, Bisymmetric tensor algebra, II, Amer. J. Math. vol. 64 (1942) pp. 734-753. We shall refer to this paper as B.T.A.II.

[^1]: ${ }^{5}$ G. de B. Robinson, Note on a paper by R. H. Bruck and T. L. Wade, Amer. J. Math. vol. 64 (1942) p. 753.
 ${ }^{6}$ D. E. Littlewood, Theory of group characters and matrix representations of groups, Oxford, 1940, p. 265.

