THE NUMBER OF INDEPENDENT COMPONENTS OF THE TENSORS OF GIVEN SYMMETRY TYPE

RICHARD H. BRUCK AND T. L. WADE

Let $T_{i_1 \cdots i_p}$ be an arbitrary covariant tensor with respect to an *n*-dimensional coordinate system, and let

(1)
$$T_{i_1\cdots i_p} = {}_{[p]}T_{i_1\cdots i_p} + \cdots + {}_{[\alpha]}T_{i_1\cdots i_p} + \cdots + {}_{[1^p]}T_{i_1\cdots i_p}$$

represent the decomposition^{1,2} of $T_{i_1 \cdots i_p}$ into tensors of various symmetry types, the tensor $[\alpha]T_{i_1 \cdots i_p}$ corresponding to the partition $[\alpha]$ of the indices $i_1 \cdots i_p$. The number of independent (scalar) components of $T_{i_1 \cdots i_p}$ is n^p ; and if c_{α} denotes the number of components of $[\alpha]T_{i_1 \cdots i_p}$, then

(2)
$$n^p = c_{[p]} + \cdots + c_{[\alpha]} + \cdots + c_{[1^p]} = \sum c_{\alpha}.$$

For p = 2, 3, 4, J. A. Schouten³ has obtained expressions for the c_{α} 's in terms of n; but the difficulties of his method become great for larger values of p. The purpose of this paper is to present a method of obtaining c_{α} in terms of n from the character table for the symmetric group on p letters.

Associated with the immanant tensor² $I_{(j)}^{(i)} \equiv_{[\alpha]} I_{j_1...j_p}^{i_1...i_p}$ we have defined the numerical invariant $r = r_{\alpha}$, the rank⁴ of $I_{(j)}^{(i)}$, which is the greatest integer r for which the tensor

(3)
$$I_{(j_1)\cdots(j_r)}^{(i_1)\cdots(i_r)} = \begin{vmatrix} I_{(j_1)}^{(i_1)}\cdots I_{(j_r)}^{(i_1)} \\ \cdots \\ I_{(j_1)}^{(i_r)}\cdots I_{(j_r)}^{(i_r)} \end{vmatrix}$$

does not vanish; here $(i_{\lambda}) = i_{\lambda 1} \cdots i_{\lambda p}$. For convenience, let us regard $I_{(j)}^{(i)}$, for each (i), as a vector $V_{(j)}$ in $N = n^r$ dimensions. Then from the above definition, it is clear that exactly r_{α} of the N vectors $V_{(j)}$ are linearly independent. Since $[\alpha]T_{(j)} \equiv [\alpha]T_{j_1} \cdots j_n$ may be defined by

(4)
$$[\alpha] T_{(j)} = [\alpha] I_{(j)}^{(l)} T_{(l)};$$

Presented to the Society, November 22, 1941 under the title *The number of inde*pendent components of the tensor $_{[\alpha]}T_{i_1\cdots i_p}$; received by the editors November 19, 1942. ¹ H. Weyl, *The classical groups*, Princeton, 1939, chap. IV.

² T. L. Wade, Tensor algebra and Young's symmetry operators, Amer. J. Math. vol. 63 (1941) pp. 645-657.

³ J. A. Schouten, Der Ricci-Kalkul, Berlin, 1924, chap. VII.

⁴ Richard H. Bruck and T. L. Wade, *Bisymmetric tensor algebra*, II, Amer. J. Math. vol. 64 (1942) pp. 734-753. We shall refer to this paper as B.T.A.II.

exactly r_{α} of the components of $T_{(j)}$ are linearly independent; thus $c_{\alpha} \leq r_{\alpha}$. But as an alternative way of writing equation (32), B.T.A. II,

(5)
$$n^p = r_{[p]} + \cdots + r_{[\alpha]} + \cdots + r_{[1^p]} = \sum r_{\alpha}.$$

Hence, using (2),

(6)
$$n^p = \sum c_{\alpha} \leq \sum r_{\alpha} = n^p$$

and since the numbers c_{α} , r_{α} are non-negative we conclude this fact.

THEOREM I. $c_{\alpha} = r_{\alpha}$.

Combining Theorem I with Theorem V, B.T.A. II, we obtain this theorem.

THEOREM II.

$$c_{\alpha} = rac{f_{\alpha}}{p!} \sum_{(\rho)} \chi^{(\rho)}_{\alpha} \cdot \nu_{\rho} n^{k\rho},$$

where $\chi_{\alpha}^{(\rho)}$ is the characteristic for class (ρ) corresponding to the irreducible representation $[\alpha]$ of the symmetric group on ρ letters,

 f_{α} is the characteristic corresponding to the class (1^{p}) ,

 ν_{ρ} is the order of class (ρ),

 $k_{\rho} = \rho_1 + \rho_2 + \cdots + \rho_p$, where $\rho = (1^{\rho_1}, 2^{\rho_2}, \cdots, p^{\rho_p})$.

Another method of finding c_{α} is given by G. de B. Robinson⁵ in relating r_{α} to A. Young's substitutional analysis.

For p = 4 the character table is,⁶ with the additional row of values of k_{ρ} inserted:

Class:	(ρ)	(14)	$(1^2, 2)$	(1, 3)	(4)	(2^2)
Order:	$v_{ ho}$	1	6	8	6	3
	$k_{ ho}$	4	3	2	1	2
	[4]	1	1	1	1	1
	[3, 1]	3	1	0	-1	-1
	$[2^2]$	2	0	-1	0	2
	$[2, 1^2]$	3	-1	0	1	-1
	[14]	1	-1	1	-1	1

From this, using Theorem II, we have, for example

⁶ G. de B. Robinson, Note on a paper by R. H. Bruck and T. L. Wade, Amer. J. Math. vol. 64 (1942) p. 753.

⁶ D. E. Littlewood, Theory of group characters and matrix representations of groups, Oxford, 1940, p. 265.

$$c_{[4]} = (1/4!) \{ 1 \cdot 1 \cdot n^4 + 1 \cdot 6 \cdot n^3 + 1 \cdot 8 \cdot n^2 + 1 \cdot 6 \cdot n + 1 \cdot 3 \cdot n^2 \}$$

= $C_{n+3,4}$,

and

$$c_{[3,1]} = (3/4!) \{ 3 \cdot 1 \cdot n^4 + 1 \cdot 6 \cdot n^3 + 0 \cdot 8 \cdot n^2 - 1 \cdot 6 \cdot n - 1 \cdot 3 \cdot n^2 \}$$

= 9C_{n+2,4}.

In this manner we obtain the following tables of c_{α} :

Three-indexed tensors

[α]	[3]	[2, 1]	[13]
cα	$C_{n+2,3}$	$4C_{n+1,3}$	$C_{n,3}$

Four-indexed tensors

	[o c,	$\left[\begin{array}{c} \alpha \end{array} \right] \left[\begin{array}{c} \left[4 \right] \\ C_{n+1} \end{array} \right] \\ \end{array}$	$\begin{bmatrix} 3, 1 \\ 9C_{n+2,4} \end{bmatrix}$	[2 ²] $nC_{n+1,3}$	$[2, 1^2]$ 9 $C_{n+1,4}$	[14] C _{n,4}	
			Five-ind	lexed tens	ors		
$\left[lpha ight] \ c_{lpha}$	$\begin{bmatrix} 5 \\ C_{n+4,5} \end{bmatrix}$	[4, 1] $16C_{n+3,5}$	[3, 2] $5nC_{n+2,4}$	$[3, 1^2]$ $36C_{n+2,5}$	$[2^2, 1]$ $5nC_{n+1,4}$	$[2, 1^3]$ $16C_{n+1,5}$	[1 ⁵] C _{n,5}
			Six-ind	exed tenso	ors		
$\left[lpha ight] $ c_{lpha}	$\begin{bmatrix} 6 \\ C_{n+5,6} \end{bmatrix}$	[5, 1] $25C_{n+4,6}$	[4, 2] (27 $n/2$) $C_{n+3,5}$	$[4, 1^2]$ $100C_{n+3,6}$	$[3^2]$ (5/3) $C_{n+2,4}$	[3, 2] $C_{n+1,2}$ (128 $n/$	$(3) C_{n+2,5}$
	$\begin{bmatrix} \alpha \end{bmatrix}$ c_{α}	$[3, 1^3]$ $100C_{n+2}$,	[2 ³] 6 $(5/3)C_{n+1,4}$	$[2^2, C_{n,2}]$ (27 <i>n</i> /	$\begin{bmatrix} 1^2 \\ 2 \end{bmatrix} C_{n+1,5} = 2$	$\begin{bmatrix} 2, 1^4 \end{bmatrix}$ [$5C_{n+1,6}$ C	1 ⁶]

UNIVERSITY OF WISCONSIN AND UNIVERSITY OF ALABAMA

472