
A NOTE ON APPROXIMATION BY 
RATIONAL FUNCTIONS 

H. KOBER 

The theory of the approximation by rational functions on point 
sets E of the js-plane (z = x+iy) has been summarized by J. L. Walsh1 

who himself has proved a great number of important theorems some 
of which are fundamental. The results concern both the case when E 
is bounded and when E extends to infinity. 

In the present note a Z^-theory (0<p< oo) will be given for the 
following point sets extending to infinity: 

A. The real axis — oo <x < oo, y — 0. 
B. The half-plane — oo < # < oo, 0 < j < oo. 
The only poles of the approximating functions are to lie at pre-

assigned points whose number will be required to be as small as pos
sible.2 We shall make use of the theory of the class fgp the funda
mental results of which are due to E. Hille and J. D. Tamarkin;3 

&P is the set of functions F(z) which, for 0<y< oo, are regular and 
satisfy the inequality 

ƒ 00 

\F(x+ iy)\*>dx<> Mp or | F(z) | ^ M 
- 0 0 

for 0<p< oo or p = oo, respectively, where M depends on F and p 
only. By \f(x+iy) \ p we denote 

) I/P 

or ess. u.b. | f(x + iy) \ 

for 0 < £ < o o or £ = o o , respectively, and by a and 13 two arbitrarily 
fixed points in the upper or lower half-plane, respectively. We obtain 
the following results:4 

THEOREM 1. Let 0 < p < oo and F(t)GLP( — oo , co)yletcbean integer 
greater than p~x and rk(z) = (a-z)k(z-l3)-c-k [& = 0, ± 1 , ± 2 , • • • ]. 

Received by the editors June 26, 1942. 
1 Interpolation and approximation by rational functions in the complex domain, 

Amer. Math. Soc. Colloquium Publications, vol. 20, 1935. 
2 Compare Walsh, loc. cit., for example, approximation by polynomials. 
3 Fund. Math. vol. 25 (1935) pp. 329-352, 1 ^P< <*>. For 0 < £ < 1 see T. Kawata, 

Jap. J. Math. vol. 13 (1936) pp. 421-430. 
4 The case p = oo of each of the results is a special case of Theorem 16, J. L. Walsh, 

chap. 2. 
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Then there are finite linear combinations sn(z) of the rk(z) such that 

I F(t) - sn{t)\v = ( ƒ \F{t) - sn(i)\*it\ P - > 0 as n^ oo. 

THEOREM 2. (a) Let 0<p<<x> and F{t)^Lv{ — oo, oo). A necessary 
and sufficient condition f or the existence of rational f unctions sn(z) such 
that their only poles lie in a single point of the lower half-plane and that 
| F(t) —sn(t) | p—»0 as n—> oo is that F(t) is equivalent to the limit-function 
of an element F(z) of $p. 

(b) When the latter condition is satisfied then there are rational func
tions sn(z), with their only poles at z=/3, such that, uniformly in the 
half-plane 0<;y < oo, 

F(x + iy) — sn(x + iy) 0 as n • 

By a well known result5 concerning § p , 2(b) is a consequence of 2(a). 
We start with giving explicit approximating functions in some spe

cial cases of problem (A), taking fi = â. 
THEOREM 1/. Let F ( 0 6 £ i ( - ° o , °°) or F(t)EL2(- <*>, <*>), or let 

F(t) be continuous everywhere, including infinity.6 Let c = 2, 1, 0 for 
p = 1, 2, oo, respectively, and let 

Sn{z) = 2 , ak- — 
* _ » (Z ~ â)k+c 

Then 

i(a — â) 
ak = 

2TT J _M (a — 

(* - â)k+°-1 

( « - / ) fc+i 
<fr. 

F(t) 

F(t) 

1 

1 

iv+ 1 
AT 

Z *»(') 
n=0 

Z 
n==0 

CO 

*n(0 or 
l 

U.l 
- c c < 

b. 

F(*) - sN{t) 

1 

or 

*(') -
N+ 1 ~„ 

Z *.(<) 

respectively, tends to zero as iV—> oo. When F(t) is continuous everywhere, 
including infinity, and of bounded variation in ( — oo, oo ) then the sn(t) 
converge to F(t) uniformly in ( — oo, oo ). 

I t will suffice to take a=i, the general case being deduced from 
this one by the substitution / = JR(a) +tf$(a). Let F(t)Ç±L2(- *>, <*>), 
* = tan (1/2)* [ - T T ^ ^ T T ] , and ƒ(*) = 2 ( l + e ^ ) " 1 F ( t a n t?/2). Then 
F(t)^L2(— oo, oo ) implies t h a t / ( # ) £ L 2 ( — 7r, 7T), and vice versa. Now 

5 Since sn(t)ÇzLp, we have Sn(z)E^>p, F(z) —sn(3)E:&>, and we can apply the Hille-
Tamarkin Theorem 2.1 (iii), part 2, loc. cit. * 

6 A function F(t) is said to be continuous at infinity wheil its limits, as /—> ± oo, 
both exist and are finite and equal. 
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the Fourier series ^bne
inû, belonging to ƒ(#), converges to ƒ(#) in the 

mean square over (— wt TT). We have e™ = (i — t)(i+t)-1, ( 1 / 2 ) ( 1 + ^ ) 
= i(i+t)~1; taking an = ibn, we arrive finally at the required result. In 
a similar way we prove the remaining assertions of the theorem. 
We note7 that the sequence { (2i ir ) - l l 2 (a-â) l i 2 (a- t ) n ( t -â)~ n - 1} 
[n = 0, ± 1 , ± 2 , • • • ] is a complete orthogonal and normal system 
with respect to Lp(—oo, co) [l<p< oo]. 

To prove Theorem 1, we have to show that, given e>0 , there is a 
finite linear combination sn(z) of the ru(z) such that | F{t) — sn(t) \ p< e. 
We can find a positive number b and a function ƒ(/) such that ƒ(/) 
is zero for /\ ^b and continuous for — b^t^b, and that 

£ 
f (e/2)* for p > 1 

1 W y w ' " ' l ( l / 2 ) € ' for p < 1. 

The function g(/) = (t—fi)cf(t) is continuous everywhere, including in
finity. From results of Walsh8 we deduce the existence of functions 

» (a - z\k 

°n(z) = Zu ak,n[ ) , » = 0 , 1, 2 , 
fc—n \Z — fi/ 

| g(0 —<Tn{t) | oo—̂0 as ^—> co. Taking sn(z) = (z—($)-e<rn(z), we have 

/(')-*»(0 = (* ~ 0)c 

p . . . . . ,Pr" ^ ^ *(0 - *»(/) :ƒ.: l ' - 0 
The right side tends to zero as n—> oo. Therefore, for some n, we have 
| / ( 0 - * » ( 0 | ? < 8 , | ^ ( / ) - 5 n ( / ) | ^ < € ^ which completes the proof. 

To prove Theorem 2(a), we need some lemmas. 

LEMMA l.9 Let <p(w) belong to the Riesz class Hp [0<p< oo ], that 
is to say, let <p(w) be regular for \w\ < 1 and satisfy the inequality 

a ir \ l / p 

I <p(re»)\*d&\ S M, 0 < r < 1, 
where M is independent of r.10 Then there are polynomials Pn(w) 
[w = l, 2, • • • ] swcfe ^a£ | |^(^)~Pn(re i ê)\ \p—»0 as w—>co, uniformly 

for O O ^ l . 
7 Cf. H. Kober, a forthcoming paper in Quart. J. Math. Oxford Ser. 1943. 
8 Walsh, loc. cit. chap. 2, Theorem 16. It can also be deduced from Theorem 1' 

of this paper. 
9 For p— oo the result holds if and only if <f)(eiâ) is continuous for — ir^ê^ir. 

Cf. Walsh, loc. cit., and Trans. Amer. Math. Soc. vol. 26 (1924) pp. 155-170. 
10 F . Riesz, Math. Zeit. vol. 18 (1923) pp. 87-95. 
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By well known properties of the class HP1 it will suffice to take 
r = l. Let (p(w) =%2anw

n. Since, for any fixed R [0<R<1] and uni
formly with reepect t o # [ — 7r^t^^7r], the series ^anR

nein* converges 
to <p(Reiû), the result can be deduced by means of the well known 
equation \\(p(e^)-ip(re^)\\p-^0 [ r -» l ] . 

LEMMA 2. Let w = (i — z)(i+z)~1. The f unction F(z) belongs to &p if, 
and only if, the function (1 +w)~21p<p(w) belongs to HP1 where <p(w) 

Hille and Tamarkin have proved11 that the condition <p(w) C0.Hp is 
necessary. To define the function (l+w)~2/p, we cut the w-plane 
along the negative real axis from w= — 1 to w= — oo. When F(z) 
belongs to &p then its limit function F{t) [;y-->0, x = t] belongs 
to Lp(-oo, oo), therefore ( l + é ^ ) - 2 / 2 V ( ^ ) to Lp(-w, w). Let 
\f/(w) = (l+w)~2,p<p(w),and 0<q<p/3. By Holder's theorem, we have 

ƒ * / /» TT \qlp/ f * d& \ l - « / P 

I Mrtf») \qdû** I <p(re**) \p) -, ; J 
The right side is uniformly bounded for 0 < r < l . Hence \l/(w)(£Hq; 
its limit-function yp(eiû), however, belongs to LP( — TT, IT) ; hence12 

\p(w)(E:Hp- Conversely, let \p(w)E:Hp. From a result due to R. M. 
Gabriel13 we deduce that 

f | >P{w) \p | dw I ^ 2 J | ^ ( ^ ) |*<W, 

where C is any circle strictly interior to the unit circle Y [\w\ = 1 ] . 
By Fatou's theorem, this inequality holds when C is a circle touch
ing r from within at w——\. Finally, by the transformation 
w = (i - z)(i + z)-\ w e deduce that | F(x +iy)\p£ 22>*||^(e<*)||p 

[0<y< oo ] which proves the lemma. In a similar way we can show 
that when F(z)E$P and F(t)GLq(- oo, » ) [ 0 < # ^ o o ] jftén 

LEMMA 3. Let 0<p^ oo, letfn(z)G$P [n = l, 2, • • • ], and letfn(t) 
be the limit-function of fn(z). Let F(t) be defined in ( — oo, oo) and 
I <F(0 ~/»(01 P - ^ ^ w—> °° • ^Aew F(/) is equivalent to the limit-function 
of an element f{z) of $p. 

11 Loc. cit. Lemma 2.5. 
12 V. Smirnoff, C. R. Acad. Sci. Paris vol. 188 (1929) pp. 131-133. A. Zygmund, 

Trigonometrical series, Warsaw, 1935, 7.56(iv). 
13 J. London Math. Soc. vol. 5 (1930) pp. 129-131. Cf. Hille-Tamarkin, Lemmas 

2.1 and 2.5. 
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The proof for 0 <p < oo is entirely different from that for 1 Sp ^ oo, 
given in a former paper.14 Let 0<p<l and p > 0 , and let <K*) €:§*>• 
Then, for p^y<oot we have \</>(z)\ g {{\ / 2)TT p)~1^ |</>(/) |P.15 Since 
\fn(t)— /»(/)|p—>0 [w >#—><» ], taking 4>(z) =fm(z)-fn(z) we can de
duce that the sequence {fn(z)} converges to an analytic function ƒ (2), 
uniformly for — 00 <x< &, p<y< 00. Since there is a constant K, in
dependent of n, such that \fn(t)\p^K, we have \fn(x+iy)\p^K, 
and we can deduce that \f(x+iy)\pSK for any positive 3/. Hence 
f(z)Çz&v. We are left to show that ƒ(/), the limit-function 
of ƒ(2), is equivalent to F{t) in (—<», °o). Given e>0 , we have 
I (fm(x) — /N(X)\1< É / 1 2 for m^Nf fixing iV in a suitable way, and 
|M*+*3>) -ƒ*(*) | ; ^ e/6 for 0 <y^ 5 = 5(€, N). Hence 

I ƒ«(* + iy) - fm{%) \ls\ fm(x + iy) - fN(x + iy) \v
p 

+ I fm(x) - fN(x) \l + I fN(x + iy) - fN(x) |p ^ e/3 

for m^NjO<y ^ 5, since the first term on the right side is not greater 
than the second term. Given M>0, we have 

/

M /» M 

I ƒ(*) - /mO) N * ^ I I f(x + iy) - fm(x + iy) \*dx 
-M J -M 

+ \f(x+ iy) - f(x) |p + I fm(x + iy) - fm(x) |*. 
The right side is smaller than e for m ^m0(e) , as we see fixing a suit
able value for y. Consequent ly /^ ) = F(x) almost everywhere in any 
finite interval ( — M> M) and, therefore, in (—00, <*>). With a slight 
alteration, the proof holds for 1 ^p < 00. 

By the lemma, the necessity of the condition in Theorem 2(a) is 
evident. For sn(t) belongs to Lp{ — 00, 00), therefore sn(z) to &p. To 
prove its sufficiency, we take first Kp < <*>. By Theorem 1, there are 
rational functions Rn(z) such that their only poles lie at z = j3 and z = ]8 
and that | /?(*) — i?n(0|p~^0 a s n-^co. Taking 2?»(s) =s»(s)+(r„0e)» 
where the rational functions s'n and an vanish at infinity and have no 
poles other than at z = fi or s=j8, respectively, we have sn(z)Ç.$p$ 

(rw(s)G§p. Denoting by §ƒ the Hubert operator 

1 r °° ƒ(*)* 
< p / = _ P F ^ Z _ , 

7T J -oo ^ ~ X 

we have | # / | p^Cpl / l* , $F = iF(x) and $$» = &»(#)> § 0 ^ = - ^ „ ( x ) . 1 4 

14 H. Kober, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 421-427. 
16 This can be shown by means of the inequality (73), M. Plancherel and G. Polya, 

Comment. Math. Helv. vol. 10 (1937-1938) pp. 110-163. 
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Hence 

2 j F(t) - sn{t) \p = | ÏF + §F - (iRn + §Rn) \p 

S \F-Rn\p + \$(F-Rn)\p^ (Cp+ 1)\F-Rn\p 

which tends to zero as n—> oo. Hence | F(t) — sn(t) \ p—>0 as n—> oo. 
L e t n o w O < £ ^ l and F(Z)Ç:!QP, let/3 = — i, z = i(l — w)(l+w)~1 and 

<p(ze>) = JP(S). Given e>0 , from the Lemmas 2 and 1 we infer the exist
ence of a polynomial P(z) such that 

-7T 

<p(ew)(l + ^*) -2 /P - p ( ^ ) \Pd# ^ €/4# 

Hence 

F(/) - (1 + e*»)2^P( I * ^ €/2f 

- c o I \i + t/\ 

where t = tan a/2. Let b be an integer, p~1<b^l-\rp~1. Then the ra
tional function x(s) = (2i)6(i+^)~&P{ (i — 3)(i+js) -1} has no singular
ity except at z=—i. Since x W G ^ ^ - 0 0 » oo), we have | X W | P 
= C<oo, Now the function (l+eiû)2,p~b can be approximated by 
polynomials Qm{e%û) [m —I, 2, • • • ], uniformly for — TT^Û^TT. 

Hence, for some m, we have 

f 1(1 + e^y^p(^) - x(t)Qm(--~) 
J -00 I \t + t / \l + t/ 

p 

dt < e/2. 

Thus | F{t) -x(t)Qm{{i-t){i+t)-1} \ p< e1^. This completes the proof 
which, slightly altered, holds for 1 <p ^ 2. 

For /> = 1, 2, oo, we obtain explicit approximating functions by 
Theorem 1' and by the lemma: 

Let l^p^ oo and F(z)(E.&P, let a be an integer and a^O for p = l, 
0,^2 for p = oo , a ̂  1 otherwise ; then 

L (a - t)n 

F(t) — dt = 0 fom = 0, 1, 2, 

THEOREM 2'. Let p = 2, I, or oo awd c = l, 2, or 0, respectively; let 
F{z) G ^ p # tó JF(/), JAe limit-function of F(z), be continuous everywhere 
including infinity when p = oo. Let sn(z) be defined by 

- 0 5 - z ) * 1 » > ( 0 - * ) * p = 1 ' l 
>_. ak I ƒ> = 2 I or y. y. ak , 
to (z-p)k+c » + 1 M to (z - P)k+° U = » J ' 
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where 

a, = i - ƒ?(*) - ^ — (ft. 
-co (0-/)fc+1 

Then, uniformly for O^y < oo , | ^(x+^y) — Sn(#+^y) | v~*0 as n~* °° • 

Applying Theorem 2' to the components of g(z) = (1/2)^(1 — s) 
r((l/2)s)7r~s/2£*(s),16 where f(s) is the Riemann zeta-function and 
z = i(l— 2s), we can deduce the following corollary: 

Let0^a< oo, q = i(l— a), r=i(l+a), let 

00 Z lOO 

â(x) = £ e-"2"; bo = t?(l)/2 + (1 - a/2) j v'i*â'(v)dv; 

&=0 ft! 

&n = ( - i f ƒ V V « { £ n 0 ) ( l o g ! 0 / 2 « ( a ^ L n ^ a O g w ) ^ } * , 

» > 0. 
Then the series 

converges to g(z) uniformly f or — oo <x< oo, —a^y^-a, while it does 
not converge whenever \y\ >a. 

The series takes a simple form for a — 0 (critical line). 

THE UNIVERSITY, 
EDGBASTON, BIRMINGHAM, ENGLAND 

36 In fact to the function g\(z— ia)E:&^ where g{z)=*g\{z)-\-g\(—z), gi(z) 
= ((1 +s2)/16)fr {#(t) - 1 } tV-*Wt- (1/4) - (is/4) {ê{\) - 1 j . 


