ON NON-CUT SETS OF LOCALLY CONNECTED CONTINUA

W. M. KINCAID

W. L. Ayres ${ }^{1}$ and H. M. Gehman ${ }^{2}$ have proved independently that if a locally connected continuum S contains a non-cut point p, there exists an arbitrarily small region R containing p and such that $S-R$ is connected. Our paper is concerned with certain generalizations of this theorem.

We shall consider a space S which is a locally connected continuum and contains a closed set P such that $S-P$ is connected. We show that under these hypotheses P can be enclosed in an open set R, the sum of a finite number of regions, whose complement is a locally connected continuum. We show further that if there exists a family of sets \mathfrak{F} no element of which separates $S-P$, then there exist two open sets R and R^{\prime} (with $R \supset R^{\prime} \supset P$) of the above type and having the property that no element of \mathfrak{F} contained in $S-R$ separates $S-R^{\prime}$. When the elements of \mathfrak{F} are single points, it is possible to choose $R^{\prime}=R$; but this is not possible in the more general case.

We close by showing that if S is not separated by any element of \mathfrak{F} plus any set of n points, and if Q is the sum of n sets of sufficiently small diameter and having sufficiently great mutual distances, then the set $S-Q$ has at most one component whose diameter is greater than a preassigned positive quantity, and this component is not separated by any element of \mathfrak{F} at a sufficiently great distance from Q.

We recall some well known results. ${ }^{3}$
Let M be a locally connected continuum. Then:
(1) M is a metric space having property $S .{ }^{4}$
(2) M is the sum of a finite number of arbitrarily small connected

[^0]subsets each having property S. Furthermore these subsets may be chosen either as open sets or as closed sets.
(3) If $N \subset M$ and N has property S, then any set N_{0} such that $N \subset N_{0} \subset \bar{N}$ is locally connected.

From the preceding results follows:
Lemma 1. If N is any subset of a locally connected continuum M and V is any δ-neighborhood of N, then there exists an open set U that contains N, has property S, and is such that \bar{U} is the sum of a finite number of locally connected continua contained in V.

It may clearly be supposed that every component of U contains a point of N .

Throughout this paper we shall deal with a compact metric space S, which we suppose to be a locally connected continuum. We denote by $\delta(A)$ the diameter of any set A, and by $V_{\epsilon}(A)$ the ϵ-neighborhood of A.

We shall require the following lemma, which was pointed out to the author by Dr. D. W. Hall. Its proof follows directly from the definitions involved.

Lemma 2. Let M be any locally connected subcontinuum of S. Then if T is the sum of any set of components of $S-M$, the set $K=S-T$ is a locally connected continuum.

Using methods very similar to those of Ayres ${ }^{1}$ and Gehman, ${ }^{2}$ we obtain the following generalization of their theorem.

Theorem 1. Let P be any closed set such that $S-P$ is connected. Then for any $\epsilon>0$ there exists an open set R such that (1) $P \subset R \subset V_{\epsilon}(P)$, (2) the set R is the sum of a finite number of regions, each of which intersects P, and (3) $S-R$ is a locally connected continuum.

Proof. Let $R_{1}=V_{\delta}(P)$ and $R_{2}=V_{\delta^{\prime}}(P)$, where $0<\delta^{\prime}<\delta \leqq \epsilon$. Then, since S is locally connected, at most a finite number of components of $S-R_{2}$ intersect $S-R_{1}$; let these be $K_{1}, K_{2}, \cdots, K_{n}$, and choose $p_{i} \in K_{i}\left(R_{1}-R_{2}\right)$ for $i=1, \cdots, n$. Since P is closed, $S-P$ is a region, and we can find arcs $p_{1} p_{i} \subset(S-P)$ for $i=1,2, \cdots, n$; thus we construct the connected set $C=\sum_{i=1}^{n}\left(K_{i}+p_{1} p_{i}\right)$.

Taking $d=\rho(P, C)$, we conclude from Lemma 1 that there exists a locally connected continuum V contained in $V_{d}(C)$ and therefore disjoint with P. Now let R be the sum of all components of $S-V$ that contain points of P. It follows from the local connectivity of S that R is open. To prove the theorem, we must show that R satisfies the conditions (1), (2), and (3).

Obviously $P \subset R$. On the other hand, $R \subset(S-V) \subset(S-C) \subset R_{1}$ $\subset V_{\epsilon}(P)$. Thus R satisfies (1).
To see that (2) holds, we note that $\rho(P, S-R)>0$, because R is open. It follows from Lemma 1 that there exists an open set R_{3}, the sum of a finite number of regions, such that $P \subset R_{3} \subset R$. We see that R is likewise the sum of a finite number of regions, each of which intersects P, for every component of R contains a point of P and thus a component of R_{3}.

Applying Lemma 2 with $M=V$ and $T=R$ shows that $S-R$ is a locally connected continuum. Consequently R satisfies (3), and the proof is complete.

The following example shows that Theorem 1 loses its validity if the requirement that P be closed is dropped.

Example. Take for S the closed rectangle in the $x y$-plane bounded by the lines $x= \pm 2, y= \pm 1$. Divide the rectangle into four rectangles by drawing the lines $x=0, x= \pm 1$. Denote by P^{\prime} the set consisting of the two end rectangles (open or closed), the segment $x=0,-1 \leqq y \leqq 1$, and the curve $y=\sin (1 / x),-1 \leqq x \leqq 1$; thus P^{\prime} is connected but not locally connected. We see that Theorem 1 does not hold for $P=S-P^{\prime}$, for no set having the properties of R can be found corresponding to $\epsilon<1$.

Theorem 2. Let P be any closed set such that $S-P$ is connected, and suppose that \mathfrak{F} is a family of subsets of S such that $S-(P+Q)$ is connected for each $Q \in \mathfrak{F}$. Then, given $\epsilon>0$, there exist open sets R and R^{\prime}, each of which is the sum of a finite number of regions intersecting P, such that (1) $P \subset R^{\prime} \subset R \subset V_{\epsilon}(P)$, (2) the sets $S-R$ and $S-R^{\prime}$ are locally connected continua, and (3) if $Q \in \mathfrak{F}$ and $Q \subset(S-R)$, then $S-\left(R^{\prime}+Q\right)$ is connected.

Proof. We first select an open set $R \supset P$ which has the same properties as the R of Theorem 1. Next we choose another open set $R_{1} \supset P$, having the same properties as R, and such that $\bar{R}_{1} \subset R$. Then all components of $R-R_{1}$ have limit points in both $S-R$ and \bar{R}_{1}, since $S-R_{1}$ is connected and R is the sum of a finite number of regions, each intersecting P and in one of which any component of $R-R_{1}$ must lie. It follows from the local connectivity of S that the number of such components is finite.

Now, if any two components of $R-R_{1}$ lie in some component C of $R-P$, we connect them by a simple arc in C; this is possible because C is a region. We define V_{1} as the sum of $S-R_{1}$ and all such arcs.

Clearly V_{1} is connected. Moreover, if $Q \in \mathfrak{F}$ and $Q \subset(S-R)$, then $V_{1}-Q$ is connected. For suppose that x and y are points of $V_{1}-Q$.

Then Q cannot separate x from $R-R_{1}$ in V_{1}. This is obvious if $x \in R V_{1}$; if $x \in\left(V_{1}-R\right)$, we see (since $R-R_{1}$ separates x from $S-V_{1}$ in S) that Q cannot separate x from $R-R_{1}$ in V_{1} without separating them in S, contrary to hypothesis. Thus there exists a component X of $R-R_{1}$ such that x and X lie in the same component of $V_{1}-Q$. Similarly, there exists a component Y of $R-R_{1}$ such that y and Y lie in the same component of $V_{1}-Q$.

If X and Y are in the same component of $R-P$, there exists an arc in $R V_{1}$ connecting X and Y. On the other hand, if X and Y lie in different components of $R-P$, they must lie in the same component of $V_{1}-Q$. For suppose that $X \subset A B$, where A is a component of $R-P$ and B is a component of $V_{1}-Q$. Then A is closed in $R-P$, while B is closed in $V_{1}-Q$. Thus the sets $(A+B) \bar{R}_{1}=A \bar{R}_{1}$ and $A+B-R$ $=B-R$ are closed in $S-(P+Q)$. From the construction of V_{1} we see that $A\left(R-R_{1}\right) \subset B\left(R-R_{1}\right)$, and it follows that $(A+B)\left(\bar{R}-R_{1}\right)$ is closed in $S-(P+Q)$. Hence $A+B$, being the sum of three sets closed in $S-(P+Q)$, is closed in $S-(P+Q)$. Now suppose $Y \not \subset A+B$. Then we can find another set $A^{\prime}+B^{\prime} \supset Y$ of the same form as, and disjoint with, $A+B$. In this way it follows that $S-(P+Q)$ is the sum of a finite number of disjoint sets closed in $S-(P+Q)$, which is impossible since $S-(P+Q)$ is connected. Thus X and Y, and therefore x and y, lie in the same component of $V_{1}-Q$.

By Lemma 1, there exists a locally connected continuum V^{\prime} containing V_{1} and disjoint with P. We denote by R^{\prime} the sum of all components of $S-V^{\prime}$ that contain points of P. It follows from Lemmas 1 and 2, as in the proof of Theorem 1 , that R^{\prime} is the sum of a finite number of regions and that $S-R^{\prime}$ is a locally connected continuum. Moreover, if $Q \in \mathfrak{F}$ and $Q \subset(S-R)$, we conclude, since $\left(S-R^{\prime}\right)-V_{1} \subset R_{1}$, that $S-\left(R^{\prime}+Q\right)$ is connected. This completes the proof.

The question naturally arises whether, under the hypotheses of Theorem 2, it is possible to find a single open set T containing P and playing the parts of both R and R^{\prime} in that theorem. The following example shows that such a set T cannot in general be found.

Example. Take for S the plane set consisting of two line segments, $a_{0} p$ and $b_{0} p$, together with a sequence of parallel lines $a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2}, \cdots$, where $a_{0}, a_{1}, a_{2}, \cdots$ and $b_{0}, b_{1}, b_{2}, \cdots$ are sequences of points, converging monotonically to p, on the lines $a_{0} p$ and $b_{0} p$, respectively. We denote by c_{n} the midpoint of the segment $a_{n} b_{n}$ for $n=0,1,2, \cdots$.

Now, take for P the point p and for \mathfrak{F} the family of all pairs of points of S not separating $S-p$. Let R be any region containing p (but disjoint with $a_{1} b_{1}$). Then there exists a greatest integer $n \geqq 1$
for which $a_{n} b_{n} \subset(S-R)$. It follows that the pair of points ($c_{n}+a_{n-1}$) separates $S-R$. However, the set $S-\left(p+c_{n}+a_{n-1}\right)$ is connected; hence $\left(c_{n}+a_{n-1}\right) \in \mathfrak{F}$. Thus R cannot be taken as T.

However, the stronger conclusion can be drawn when \mathfrak{F} is a family of single points, as we now show.

Theorem 3. Let P be any closed set such that $S-P$ is connected. Suppose F is a set such that $S-(P+q)$ is connected for $q \in F$. Then for any $\epsilon>0$ there exists an open set $R \supset P$, contained in $V_{\epsilon}(P)$ and consisting of a finite number of regions, such that $S-R$ is a locally connected continuum and $S-(R+q)$ is connected for $q \in F$.

Proof. By Theorem 2, there exist open sets R_{1} and R_{2}, each consisting of a finite number of regions, such that (1) $P \subset R_{2} \subset R_{1} \subset V_{\epsilon}(P)$, (2) the sets $S-R_{1}$ and $S-R_{2}$ are locally connected continua, and (3) $S-\left(R_{2}+q\right)$ is connected for $q \in F\left(S-R_{1}\right)$. We write $V_{2}=S-R_{2}$.

Now, for $y \in V_{2} R_{1} F$ we define K_{y} as the set consisting of y plus the component of $V_{2}-y$ containing $S-R_{1}$. Then we let

$$
V=\prod_{y \in V_{2} R_{1} F} K_{y}, \quad R=S-V=\sum_{y \in V_{2} R_{1} F}\left(S-K_{y}\right)
$$

For any $y \in V_{2} R_{1} F$, the set $S-K_{y}$ is the sum of a finite number of regions. For suppose $x \in\left(S-K_{y}\right)$. Since $S-y$ is a region, there exists an $\operatorname{arc} x r \subset(S-y)$ for all $r \in R_{2}$. If there exists a point $x_{1} \in K_{y}$ on $x r$, there exists a first such point x_{2}, since K_{y} is closed. The arc $x x_{2}$ is not contained in V_{2}, since x and x_{2} lie in different components of $V_{2}-y$; thus there exists a point $x_{3} \in\left(S-V_{2}\right)=R_{2}$ on $x x_{2}$. In any case, therefore, there exists in $S-K_{y}$ an arc joining x to some point of R_{2}. It follows that $S-K_{y}$ is the sum of a finite number of regions, each containing at least one component of R_{2}. Since this is true for all $y \in V_{2} R_{1} F$, the same must be true of R.

The set V is an A-set ${ }^{5}$ in V_{2}. For suppose otherwise. Then, since V is closed, there exists an arc $x q y$ in V_{2} spanning V. Since $q \notin V$, there exists a point $z \in V_{2} R_{1} F$ such that $q \notin K_{z}$. But $x+y \subset K_{z}$. Therefore z must separate both x and y from q in V_{2}, which is impossible. Since V is an A-set, it is a locally connected continuum.

Moreover, V has no cut points in F. For let $x \in V, y \in V$, and $q \in V F$. If $q \in\left(V-R_{1}\right)$, there exists an arc $x y \subset\left(V_{2}-q\right)$, because q is not a cut point of the locally connected continuum V_{2}; since V is an A-set in V_{2}, the $\operatorname{arc} x y \subset(V-q)$. If $q \in V R_{1}$, we have $x+y \subset K_{q}$ and hence there exists an arc $x y \subset\left(K_{q}-q\right)$; again $x y \subset(V-q)$.

[^1]We have now shown that R is the sum of a finite number of regions, that $S-R$ is a locally connected continuum, and that $S-(R+q)$ is connected for any $q \in F$. Thus the proof is complete.

Theorem 4. Suppose that no m points separate S, and that \mathfrak{F} is a family of sets such that $S-\left(Q+\sum_{i=1}^{m} p_{i}\right)$ is connected for any $Q \in \mathfrak{F}$ and any m points $p_{1}, p_{2}, \cdots, p_{m}$ of S. Then corresponding to any $\epsilon>0$ there exists a number $\delta>0$ such that if $P_{1}, P_{2}, \cdots, P_{m}$ are m sets contained in S, each of diameter less than δ, while $\rho\left(P_{i}, P_{j}\right)>2 \epsilon$ for $0 \leqq i \leqq j \leqq m$, the set $S-\sum_{i=1}^{m} P_{i}$ has at most one component K of diameter greater than ϵ, and (if K exists) $K-Q$ is connected for every $Q \in \mathfrak{F}$ for which $\rho\left(Q, \sum_{i=1}^{m} P_{i}\right)>\epsilon$.

Proof. Let $\mathfrak{F}^{(1)}$ be the family of sets having as elements all sets of the type $Q+Q_{1}$, where $Q \in \mathfrak{F}$ and Q_{1} is any set of at most $m-1$ points. Then if $F \in \mathfrak{F}^{(1)}$, the set $S-(F+p)$ is connected for every $p \in S$.

Using Theorem 2, we obtain for every point $x \in S$ two regions V_{x} and W_{x}, each of diameter less than ϵ, such that $x \in V_{x} \subset W_{x}$, while the sets $S-V_{x}$ and $S-W_{x}$ are locally connected continua, and $S-\left(F+V_{x}\right)$ is connected if $F \in \dot{\mathscr{F}}^{(1)}$ and $F \subset\left(S-W_{x}\right)$. We then choose a third region $U_{x} \supset x$ such that $\bar{U}_{x} \subset V_{x}$. By the Heine-Borel theorem, there exists a finite subfamily $\left\{U_{1}, \cdots, U_{n_{1}}\right\}$ of the family $\left\{U_{x}\right\}$ such that $S=\sum_{i=1}^{n_{1}} U_{i}$. In each set $U_{i}\left(i=1,2, \cdots, n_{1}\right)$ we choose a point x_{i} for which $U_{x_{i}}=U_{i}$ and define $V_{i}=V_{x_{i}}, W_{i}=W_{x_{i}}$. Let $\delta_{1}=\min _{i=1}, \cdots, n_{1} \rho\left(U_{i}, S-V_{i}\right)$.

Now denote by $\mathfrak{F}^{(2)}$ the family of sets having as elements all sets of the type $Q+Q_{2}$, where $Q \in \mathfrak{F}$ and Q_{2} is any set of at most $m-2$ points, and for $i=1,2, \cdots, n_{1}$ define $\mathfrak{F}_{i}^{(2)}$ as the largest subfamily of $\mathfrak{F}^{(2)}$ all of whose elements are contained in $S-W_{i}$. Then if $F \in \mathfrak{F}_{i}^{(2)}$, we see that $\left(S-V_{i}\right)-(F+p)$ is connected for every $p \in\left(S-W_{i}\right)$.

Applying Theorem 2 to the locally connected continuum $S-V_{i}$, we obtain for every point $x \in\left(S-W_{i}\right)\left(i=1, \cdots, n_{1}\right)$ three regions $U_{i x}, V_{i x}$, and $W_{i x}$, each of diameter less than ϵ, in the locally connected continuum $S-V_{i}$, such that $x \in U_{i x} \subset \bar{U}_{i x} \subset V_{i x} \subset W_{i x}$ and $S-\left(V_{i}+V_{i x}\right)$ is a locally connected continuum, while $\left(S-V_{i}\right)$ $-\left(F+V_{i x}\right)$ is connected if $F \in \mathfrak{F}_{i}^{(2)}$ and $F \subset\left(S-W_{i x}\right)$. Writing

$$
T_{i}=\underset{x}{E}\left[\rho\left(x, W_{i}\right) \geqq \epsilon\right], \quad i=1,2, \cdots, n_{1},
$$

we see that if $x \in T_{i}$, the set $W_{i x}$ is contained in the interior of $S-W_{i}$ and is therefore a region in S. It follows by the Heine-Borel theorem that the family of regions $\left\{U_{i x}\right\}$ (for all $x \in T_{i}$) contains a finite subfamily $\left\{U_{i 1}, U_{i 2}, \cdots, U_{i n_{2}(i)}\right\}$ such that

$$
T_{i} \subset \sum_{j=1}^{n_{2}(i)} U_{i j} \subset\left(S-\bar{W}_{i}\right), \quad i=1, \cdots, n_{1}
$$

We write for simplicity $n_{2}=\max _{i=1, \cdots, n_{1}}\left[n_{2}(i)\right]$, and by making repetitions if necessary we obtain n_{1} families, each containing n_{2} regions and having the above properties. Regions $V_{i j}$ and $W_{i j}$ are then selected for $i=1, \cdots, n_{1}, j=1, \cdots, n_{2}$ as in the preceding case. We let

$$
\delta_{2}=\min _{i=1, \cdots, n_{1} ; j=1, \cdots, n_{2}} \rho\left(U_{i j}, S-V_{i j}\right) .
$$

We proceed by induction as follows. Suppose that for some $k<m$ we have found three sets of regions $\left\{U_{i_{1} i_{2} \cdots i_{k}}\right\},\left\{V_{i_{1} i_{2} \cdots i_{k}}\right\}$, and $\left\{W_{i_{1} i_{2} \cdots i_{k}}\right\}$ (where $i_{j}=1,2, \cdots, n_{j} ; j=1,2, \cdots, k$), having the following properties:
(1) $\bar{U}_{i_{1} \ldots i_{k}} \subset V_{i_{1} \cdots i_{k}} \subset W_{i_{1} \cdots i_{k}}$;
(2) $\delta\left(W_{i_{1} \cdots i_{k}}\right)<\epsilon$;
(3) $S-\sum_{j=1}^{k} V_{i_{1} \ldots i_{j}}$ is a locally connected continuum;
(4) $T_{i_{1} i_{2} \cdots i_{k-1}} \subset \sum_{i_{k}=1}^{n_{k}} U_{i_{1} \cdots i_{k}} \subset\left(S-\sum_{j=1}^{k-1} \bar{W}_{i_{1} \cdots i_{j}}\right)$,
where

$$
T_{i_{1} i_{2} \cdots i_{k-1}}=\underset{x}{E}\left[\rho\left(x, W_{i_{1} \cdots i_{j}}\right) \geqq \epsilon \text { for } j=1,2, \cdots, k-1\right] ;
$$

(5) if $\left(Q+\sum_{i=1}^{m-k} q_{i}\right) \subset\left(S-\sum_{j=1}^{k} W_{i_{1} \ldots i_{j}}\right)$, where $Q \in \mathfrak{F}$ and $q_{i} \in S$ for $i=1,2, \cdots, m-k$, then the set $\left(S-\sum_{j=1}^{k} V_{i_{1} \cdots i_{j}}\right)-\left(Q+\sum_{i=1}^{m-k} q_{i}\right)$ is connected.

In order to take the next step, we define $\dot{\mathfrak{F}}^{(k+1)}$ as the family of sets having as elements all sets of the type $Q+Q_{k+1}$, where $Q \in \mathfrak{F}$ and Q_{k+1} is any set of at most $m-(k+1)$ points. Then we denote by $\mathfrak{F}_{i_{1} \cdots i_{k}}^{(k+1)}\left(i_{j}=1,2, \cdots, n_{j} ; j=1,2, \cdots, k\right)$ the largest subfamily of $\mathfrak{F}^{(k+1)}$ all of whose elements are contained in $S-\sum_{j=1}^{k} W_{i_{1} \ldots i_{j}}$. It follows from (5) that $\left(S-\sum_{j=1}^{k} V_{i_{1} \ldots i_{j}}\right)-(F+p)$ is connected for all $F \in \mathfrak{F}_{i_{1} \cdots i_{k}}^{(k+1)}$ and $p \in\left(S-\sum_{j=1}^{k} W_{i_{1} \cdots i_{j}}\right)$.

Applying Theorem 2 to the locally connected continuum $S-\sum_{j=1}^{k} V_{i_{1} \cdots i_{j}}$, we obtain for any point $x \in\left(S-\sum_{j=1}^{k} W_{i_{1} \ldots i_{j}}\right)$ three regions $U_{i_{1} \cdots i_{k} x}, V_{i_{1} \cdots i_{k} x}$, and $W_{i_{1} \cdots i_{k} x}$, each of diameter less than ϵ, in the locally connected continuum $S-\sum_{j=1}^{k} V_{i_{1}} \cdots_{i j}$, such that

$$
x \in U_{i_{1} \cdots i_{k} x} \subset \bar{U}_{i_{1} \cdots i_{k} x} \subset V_{i_{1} \cdots i_{k} x} \subset W_{i_{1} \cdots i_{k} x}
$$

and $S-\sum_{j=1}^{k} V_{i_{1} \ldots i_{j}}-V_{i_{1} \ldots i_{k} x}$ is a locally connected continuum, while $\left(S-\sum_{j=1}^{k} V_{i_{1} \cdots i_{j}}\right)-\left(F+V_{i_{1} \cdots i_{k} x}\right)$ is connected if $F \in \mathscr{F}_{i_{1} \cdots i_{k}}^{(k+1)}$ and $F \subset\left(S-W_{i_{1} \cdots i_{k} x}\right)$. Then, defining $T_{i_{1} \cdots i_{k}}$ as in (4), we see as before that $U_{i_{1} \cdots i_{k} x}$ is a region in S; using the Heine-Borel theorem,
we deduce the existence of a finite family of regions $\left\{U_{i_{1} \ldots i_{k} i_{k+1}}\right\}$ ($i_{k+1}=1,2, \cdots, n_{k+1}$) such that

$$
T_{i_{1} \cdots i_{k}} \subset \sum_{i_{k+1}=1}^{n_{k+1}} U_{i_{1} \cdots i_{k+1}} \subset\left(S-\sum_{j=1}^{k} \bar{W}_{i_{1} \cdots i_{j}}\right)
$$

Selecting families of regions $\left\{V_{i_{1} \cdots i_{k+1}}\right\}$ and $\left\{W_{i_{1} \cdots i_{k+1}}\right\}$ as before, we obtain three sets of regions for which (1)-(5) hold with k replaced by $k+1$.

We carry out this construction for $k=1,2, \cdots, m$, and let

$$
\delta_{k}=\min _{i_{j}=1, \cdots, n_{i} ; j=1, \cdots, k} \rho\left(U_{i_{1} \cdots i_{k}}, S-V_{i_{1} \cdots i_{k}}\right), \quad k=1, \cdots, m .
$$

We shall now show that the theorem holds with $\delta=\min _{k=1, \ldots, m} \delta_{k}$. Consider any family of sets $\left\{P_{1}, P_{2}, \cdots, P_{m}\right\}$ satisfying the conditions of the theorem. Since $S=\sum_{i=1}^{n_{1}} U_{i}$, there exists a positive integer $i_{1} \leqq n_{1}$ such that $P_{1} U_{i_{1}} \neq 0$; then since $\delta\left(P_{1}\right)<\delta \leqq \delta_{1}$, we have $P_{1} \subset V_{i_{1}}$. Since $\rho\left(P_{1}, P_{2}\right)>2 \epsilon$, it is clear that $P_{2} \subset T_{i_{1}}$, and hence there exists a positive integer $i_{2} \leqq n_{2}$ such that $P_{2} U_{i_{1} i_{2}} \neq 0$; it follows that $P_{2} \subset V_{i_{1} i_{2}}$. Now suppose that for $j=1,2, \cdots, k<m$ there exist numbers $i_{j} \leqq n_{j}$ such that $P_{j} \subset V_{i_{1} \cdots i_{j}}$. Since $\rho\left(P_{j}, P_{k+1}\right)>2 \epsilon$ for $j=1, \cdots, k$, we see that $P_{k+1} \subset T_{i_{1} \cdots i_{k}}$; thus $P_{k+1} U_{i_{1} \cdots i_{k} i_{k+1}} \neq 0$ for some $i_{k+1} \leqq n_{k+1}$, whence $P_{k+1} \subset V_{i_{1} \cdots i_{k} i_{k+1}}$. Proceeding in this way, we find positive integers $i_{j} \leqq n_{j}$ such that $P_{j} \subset V_{i_{1} \ldots i_{j}}$ for $j=1,2$, -•, m.
We conclude from property (5) above that $S-\sum_{j=1}^{m} V_{i_{1} \cdots i_{j}}$ is connected, and hence must be contained in a single component K of $S-\sum_{i=1}^{m} P_{i}$. Any other component of $S-\sum_{i=1}^{m} P_{i}$ must therefore be contained in one of the regions $V_{i_{1} \cdots i_{j}}$; thus the diameter of such a component must be less than ϵ.

Finally, suppose that $Q \in \mathfrak{F}$ and $\rho\left(Q, \sum_{i=1}^{m} P_{i}\right)>\epsilon$. Then by (2) above, $Q \subset\left(S-\sum_{j=1}^{m} W_{i_{1} \cdots i_{j}}\right)$; by (5), $\left(S-\sum_{j=1}^{m} V_{i_{1} \cdots i_{j}}-Q\right)$ is connected. It follows that $K-Q$ is connected.

Remark. If no $n(>m)$ points separate S, we may take \mathfrak{F} as the family of all sets of $n-m$ points; then, under the above hypotheses, the component K of $S-P$ (where $P=\sum_{i=1}^{m} P_{i}$) is not separated by any set of $n-m$ points $q_{1}, q_{2}, \cdots, q_{n-m}$ such that $\rho\left(\sum_{i=1}^{n-m} q_{i}, P\right)>\epsilon$.

[^0]: Presented to the Society September 10, 1942; received by the editurs July 31, 1942.
 ${ }^{1}$ See W. L. Ayres, On continua which are disconnected by the omission of a point and some related problems, Monatshefte für Mathematik und Physik vol. 36 (1929) pp. 135-147. The theorem quoted here corresponds to Theorem 2 p. 149.
 ${ }^{2}$ See H. M. Gehman, Concerning certain types of non-cut points, with an application to continuous curves, Proc. Nat. Acad. Sci. U.S.A. vol. 14 (1928) pp. 431-433. Theorem 4 p .432 is essentially that quoted here.
 ${ }^{3}$ See G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28 (1942) p. 20 ff.
 ${ }^{4}$ A set is said to have property S if for any $\epsilon>0$ it can be expressed as the sum of a finite number of connected sets of diameter less than ϵ. The property was first introduced by W. Sierpinski in his paper Sur une condition pour qu'un continu soit une courbe jordanienne, Fund. Math. vol. 1 (1920) pp. 44-60.

[^1]: ${ }^{5}$ See Kuratowski and Whyburn, Sur les éléments cycliques et leurs applications, Fund. Math. vol. 16 (1930) pp. 305-331.

