$$Q_1 = 2x_1^2 - x_2^2, \qquad Q_2 = x_1^2 - 2x_2^2$$

admit the definite linear combination $Q_1 - Q_2 = x_1^2 + x_2^2$, and the corresponding system (5) admits the indefinite solution $B = x_1 x_2$.

EXAMPLE 2. The three forms

$$Q_1 = 2x_1^2 - x_2^2$$
, $Q_2 = x_1^2 - 2x_2^2$, $Q_3 = x_1x_2$

admit the definite linear combination $Q_1 - Q_2 - Q_3 = x_1^2 - x_1x_2 + x_2^2$, but the corresponding system (5) admits no solution form *B*.

CARNEGIE INSTITUTE OF TECHNOLOGY

NOTE ON A CONJECTURE DUE TO EULER

E. T. BELL

Euler's conjecture (1772) that

$$x_1^n + \cdots + x_t^n = x^n,$$

where *n* is an integer greater than 3 and 2 < t < n, has no solution in rational numbers x_1, \dots, x_t , x all different from zero, is still unsettled even in its first case, n=4, t=3. It may therefore be of some interest to note a solution of this equation for any n > 3 and any t > 1 in terms of (irrational) algebraic numbers, which can be made algebraic integers by suitable choice of a homogeneity parameter, all different from zero, all the numbers being polynomials in numbers of degree 2d, where $4d \leq 2n-5+(-1)^n$. If solutions differing only by a parameter are not considered distinct, there are at least d^{t-1} sets of solutions x_1, \dots, x_t, x .

The solutions described are

$$x_1 = u, \qquad x_2 = r_{t-1}u, \qquad x = (1 + r_1) \cdots (1 + r_{t-1})u;$$

$$x_j = r_{t-j+1}(1 + r_{t-j+2})(1 + r_{t-j+3}) \cdots (1 + r_{t-1})u, \qquad j = 3, \cdots, t,$$

where u is a parameter and the r's are any roots, the same or different, of any factor $F_n(r)$, irreducible in the field of rational numbers, of

$$f(r) \equiv \sum_{s=1}^{n-1} (n, s) r^{n-s-1},$$

Received by the editors July 9, 1942.

1943]

where (n, s) is the binomial coefficient n!/s!(n-s)!. For, $(r \neq 0)$, f(r) = 0 implies $(1+r)^n = 1+r^n$; whence the verification is immediate on successive reduction of $x_1^n + x_2^n, x_1^n + x_2^n + x_3^n, x_1^n + \cdots + x_t^n$. The remarks on d and the number of sets of solutions then follow since f(r) = 0 is a reciprocal equation, and $F_n(r)$ has no multiple roots.

With $y \equiv r + r^{-1}$, the first seven $F_n(r)$ are

$$n = 4: 2y + 3;$$

$$n = 5: y + 1;$$

$$n = 6: 6y^{2} + 15y + 8;$$

$$n = 7: y + 1;$$

$$n = 8: 4y^{3} + 14y^{2} + 16y + 7;$$

$$n = 9: 3y^{3} + 9y^{2} + 10y + 5;$$

$$n = 10: 10y^{4} + 45y^{3} + 80y^{2} + 75y + 32.$$

California Institute of Technology