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definitions, then the loop integral I(z, /3) in (10) is developable asymp
totically in the form 

/(*, 0) ~ £ 
fo [iog(- [±*])]^»r(i - i s - » ) 

It thus appears that the presence of an algebraic singularity of g(w) 
presents no serious difficulty. 
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Viggo Brun1 has proved the formulas 

(1) Ti(n) - T2(n) + Tz(n) = - /*(»), * > 1, 

h{n) = Tx(n) - (1/2) r2(») + (1/3) r8(») 

(2) (0 if n is not a prime power, ƒ0 if n is 

~ 11/1 if n l/tiin^p^pa, prime; 

where Ti{n) is the number of ways that n can be expressed as a prod
uct of / factors, each greater than 1. He obtains them as special cases 
of combinatorial theorems. Pavel Kuhn2 has also given proofs but 
it seems that no one has attempted to give elementary number theory 
proofs of these formulas. It is the purpose of this note to give such 
proofs and to point out a few other formulas similar to (1) and (2). 

All the formulas which we shall prove can be proved very con
cisely by using the generating function 

£ r , ( » ) » - = {{•(*)-i}«, 
n = l 

and some simple properties of the zeta-function.3 Our number theory 

Received by the editors June 19, 1942. 
1 Netto, Lehrbuch der Combinatorik, 2d edition, 1927, chap. 14, especially pp. 276-

277. 
2 Det Kongelige Norske Videnskabers Selskab, Forhandlinger, 1939. 
3 Interchanging the order of summation we have ^2Z-^dr^i(-"^)l~1Ti(n)n~"8 

- E ^ i C - ^ ^ M r W - l J ^ - r W - ^ - E ^ i M W w - 8 , and (l) is obtained by 
comparing coefficients of n~8 in the two members. Similarly, (2) follows from 
Z"-iEE.i(-i)MfHir,(»)»-'-.2:r_,(-i)M/-»{f(*)-ij'-iogf(*)-E#ioga-*-•)•* 
-ZiSr- i / - , r" . 
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proofs are the algebraic translations of these proofs. 
In order to avoid certain special cases it will be convenient to define 

(3) 
("I if n = 1, 

lO if n > 1. 

The function T%(n) has already been defined as the number of ways n 
can be expressed as a single factor greater than 1, so we have 

(0 if « = 1, 
(4) r x ( » ) = \ 

11 if W > 1. 

In writing an expression such as the left member of (1) it will be con
venient to write it as ^f^i(^

ml)l~1Ti(n) but it should be noted that 
all the terms in the series are zero after a certain point. This will be 
true of all the series which we write in this way, so we are really deal
ing only with finite sums. 

To prove (1) we first note that from the definition of Ti(n) we have 

(5) T^n) = Z Tl(d) = £ Tl(d) - r , (») , 
d\n,d^n d\n 

for feO. We let f(n) = Z ^ 0 ( - 1 ) ^ ( « ) and have, by (5), 

Z M = Z ( - D 'Z Ud) = Z ( - i y { 7 » + 2Vi(»)} = r0(n). 
d | n 1=0 d\n 1=0 

Then by the Möbius inversion formula we have 

(6) ƒ(») = £ (~ l )T, (n) = E To(n/d)»(d) = /i(n)f 

where we have used (3). This is equivalent to (1). 
This proof has an obvious extension. Putting g(n) = ]C£i( — l ) ' 

-(l + l)Ti(n) we have, using (5), 

E«M = ZC-D^ + D Z W 

= Z ( - l )T, (n) = ƒ(») = M(»). 

Inverting this we obtain 
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g(») = Z ( - D'à + i)r,(») = E nMrt»/<Q 
1=0 d\n 

(7) / 1 if » = 1, 
1 8 8 2 2 

= < (— 1) 2 if » = pi • • • ^,gi • • • g*, 

v 0 if n is divisible by a cube. 

In the same way we can prove 

Z ( - i ) ' - TT ir,(») = I^(«W»/«) 
1=0 2 do |n 

(8) / 1 if n = 1, 

= < ( - 1) 3 if » = pi • • • ^sgi • • • qtfi ' ' ' rU} 

{ 0 if n is divisible by a fourth power. 

To prove (2) we need another expression for Ti(n). From the defini
tions we have 

(9) Un) = Z 1 = Z r i t o • • • Txin), 

for / ^ l . Multiplying this by log #, rearranging, and using (9), we 
have 

Ti(n) logn= 2 rifri) ' * * 2Ti(fi)(log n + • • • + log n) 

= i E r,(ri) • • • ri(r,) log r, 

= * Z Fifo) log r« Z ri(rO • • • ri(ri-i) 
rj|n ri»»T|_i—n/rj 

= * Z rifroiogn-r^fi/fi) 
riln 

= ; Z Ti^idjT^n/d) log (»/<*) 

= / log n Z r»_i(<ori(»/<0 - ' Z r«-i(<*)ri(«/«o log <*. 
d|n d|n 

Reducing this by (5) and (4) we have 

ri(») log * = /ri(») log * - I X) Ti-i(d)Ti(n/d) log J, 

which we can write in the form 

(10) (1/(1 - 1)) £ Tt-i^T^n/d) log J = ( l / 0 r , ( n ) log *. 
d|n 
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If we now let 
oo / 1)1-1 

(11) Kn) = E / T%(n), 
i=i l> 

we have, by (4) and (10), 

£ h(d) log d = £ ( ( - iy-i/l) \ £ TiWTxin/d) log J + r,(n) log n) 
d\n 1=1 \ d\n 7 

oo 

= Z ( - i)I-1{(V0ri(») log» + (i/(j+i))7Vi(») log»} 
1=1 

= Ti(n) log n. 

Inverting this we obtain 

h(n) log n = E Ti(n/d)n(d) log w/d 

= log n E Ti{n/d)»(d) - £ T^n/d)^) log J 

log ^< £/ i( i ) ~ /*(»)[ 

- | Z /*(<*) log d - ix(n) log n> 
\ d\n J 

= - X ) M(<0 log <Z, 
d\n 

where we have used (4) and the fact thatE^KM(^) = 0 for w > l . Now 
it is easily verified that —^2td\n^{d) log d takes the value log p if 
n=pl and the value 0 if n is not a prime power.4 Hence we have 

i\/t if n = #*, 
(12) A(») = ^ . 

10 if n is not a prime power, 

which is formula (2). 
We can combine (6) and (12) to obtain another formula. We first 

note that, from (9), we have 

r i ( » ) = Z { Z Z\(r,) • • • TMr,) £ ^ ( ^ + 0 • • • T^r , )} 
d|n\tvrM«-d r„+1"Ti=n/d / 

d\n 

4 If n =» />rw and £ does not divide w we have — ]C<*hM(d) log J = 
-Ylà\»%2v\Pr v(Sy) log (*Y) - -E«|m{/*(*) log «+M(«£) log (ô£)} « -Ëai»{/«(*) log 5 
—M(5) log (ô/>)} =log/>2^ô|mM(5) and this has the value 0 if m > l , log £ if w = l. 
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We let 

iw = Ê É (- iy-Ki/»)Un) 
(14) 

= ri(») - (3/2)r,(») + (n/6)r,(«) - (25/12) r4(») 
+ (137/60)r,(«) , 

and have, by (13), 

ƒ(») = £ £ ( - l)«-i(l/ü)Z TM)TUn/d) 
1=1 n=l d\n 

= E Î E ( - i)"-1(i/M)r(1(^)(- i)-rF(f»/(0 

= z { z (- i)*-i(i/M)r„(<o è (- i)Tr(»/d)l 
d\n \ ju—1 v=0 / 

= Z Kd)f(n/d), 
d \n 

where we have used (11) and (6). Then by (6) and (12) we have 

j(„) = £ (1/tMn/p') 
pi \n 

(15) / 0 if n is divisible by the squares of two distinct primes, 

= <(- 1)S+1M/ - 1) if » = p%qi • • • q.9 t > 1, 

' ( - l)8"1^ if w - gi • • • g,. 

In quite a similar way we can prove 

*(») = Ê (- i)' E (IAM)^W 
Z = 2 !>+/**= Z ; y,M ^ 1 

= r,(») - r«(») + (ii/2)r«(«) - (5/6) r,(») 
+ (137/180) r,(») 

(16; 
' 0 if n has more than two distinct prime factors, 

21tu if n = ^gM, 

E (1/K< - ")) if » = #'. 
Brun notes that ]C?-i^i(w)==: {m} » Z X i ^ w ) = ] C " = 2 { W / M } , 

J ] t i ^ W = Z ^ = 2 W / ^ j > a n d s o on> where {#} denotes the num
ber of integers not less than 2 and not greater than x. Summing (2) 
he then has 
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m co 

H(m) = £ h{n) = {m} - (1/2) £ {W/M} 

(17) 
oo 

+ (1/3) E {«/>} • 

This formula can be used to determine h(n) =H(n)—H(n — l) and 
hence, by (2), it gives a method (although impractical) of determining 
whether n is a prime power. A similar thing can be done with each 
of our formulas. For example from (14) we have 

J(m) = £ . / ( „ ) = {m} - (3/2) £ {m/ju} 

+ (11/6) £ {m//*,} . 

Then j(n) =J(n) — /(w — 1), with the aid of (15), determines the num
ber of prime factors of n if n is not divisible by the squares of more 
than one prime. As a numerical example consider n = 6. We have 

7(6) = {6} - ( 3 / 2 ) [ { 3 | + { 2 } ] = 1/2, 

7(5) = {5} - ( 3 / 2 ) {5/2} = 5 / 2 , 

7(6) = (1/2) - (5/2) = - 2, 

and hence 6 has two distinct prime factors, each entering to the first 
power. 

Brun also points out that from (2) we have 

m co 

H(m) = £ *(») = E ( I / O T O 1 " ) -

The other formulas do not lead to such simple results but (16) gives 
m co 

Kim) = X k(n) = E E ( l /VMC»/* ' ) 1 " ) . 

If (10) is put into exponential form it can be stated in a more in
teresting way. From (10) we have 

L d\n; d?£n J 

1/0-1) 

The left member can be obtained by writing n in all possible ways 
as a product of / factors greater than 1, multiplying them together, 
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and taking the /th root. The right member can be obtained by writing 
all proper divisors of n in all possible ways as products of / — 1 factors 
greater than 1, multiplying them all together, and taking the (/ — l) th 
root. Our result is that these two numbers are equal. Thus for ^ = 24, 
/ = 3 we have 

[(2-2-6)(2-6-2)(6-2-2)(2-3-4)(2.4-3)(3-2-4)(3-4-2) 

(4-2-3)(4.3-2)]1/3 = 29-33, 

[(2.2)X(2-3)(3-2)X(2.4)(4.2)X(4.3)(3-4)X(6.2)(2.6)]1 ' /2 = 29.33. 
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