A LINEAR TRANSFORMATION WHOSE VARIABLES AND COEFFICIENTS ARE SETS OF POINTS

S. T. SANDERS, JR.

Introduction. While the theory of the linear transformation has been developed in great detail, attention has seldom ${ }^{1}$ been called to the transformation T in which variables and coefficients are sets of points. Doubtless the nonexistence of a unique inverse transformation has occasioned this neglect. In this paper the writer studies the iteration of T.

Consider first the transformation

$$
T: \begin{aligned}
& x_{1}=a_{11} x_{1}^{\prime}+a_{12} x_{2}^{\prime} \\
& x_{2}=a_{21} x_{1}^{\prime}+a_{22} x_{2}^{\prime}
\end{aligned}
$$

whose set matrix is

$$
M=\left\|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right\|
$$

where the a 's and x 's are sets of points, and the indicated sums and products refer to set operations. Applying T to the primed variables, we have the product transformation

$$
T^{2}: \begin{aligned}
& x_{1}=a_{11}^{(2)} x_{1}^{\prime \prime}+a_{12}^{(2)} x_{2}^{\prime \prime} \\
& x_{2}=a_{21}^{(2)} x_{1}^{\prime \prime}+a_{22}^{(2)} x_{2}^{\prime \prime}
\end{aligned}
$$

of set matrix

$$
M^{2}=\left\|\begin{array}{cc}
a_{11}^{(2)} & a_{12}^{(2)} \\
a_{21}^{(2)} & a_{22}^{(2)}
\end{array}\right\|,
$$

where

$$
\begin{align*}
a_{11}^{(2)} & =a_{11}+a_{12} a_{21}, & a_{12}^{(2)}=a_{11} a_{12}+a_{12} a_{22}, \\
a_{21}^{(2)} & =a_{21} a_{11}+a_{22} a_{21}, & a_{22}^{(2)}=a_{21} a_{12}+a_{22} . \tag{1}
\end{align*}
$$

Transforming in turn each new set of variables, we obtain product transformations T^{3}, T^{4}, \cdots, whose set matrices are M^{3}, M^{4}, \cdots.

[^0]Set matrices $M\left(a_{i j}\right)$ and $M^{\prime}\left(a_{i j}^{\prime}\right)$ are defined to be equal if $a_{i j}=a_{i j}^{\prime}$, $i, j=1,2, \cdots, n$, while if $a_{i j} \subset a_{i j}^{\prime},{ }^{2}$ then we shall write $M \subset M^{\prime}$. A sequence $M_{k}, k=1,2, \cdots$, of set matrices is increasing or decreasing according as $M_{k} \subset M_{k+1}$, or $M_{k+1} \subset M_{k}$.

From (1) follow $a_{11} \subset a_{11}^{(2)}$ and $a_{22} \subset a_{22}^{(2)}$. The assumptions $a_{12} \subset a_{12}^{(2)}$ and $a_{21} \subset a_{21}^{(2)}$ are equivalent to

$$
\begin{equation*}
a_{12}+a_{21} \subset a_{11}+a_{22} \tag{2}
\end{equation*}
$$

which is a necessary and sufficient condition that $M \subset M^{2}$. But from (1) we have $a_{12}^{(2)}+a_{21}^{(2)} \subset a_{11}^{(2)}+a_{22}^{(2)}$, whence by (2) the inclusion $M^{2} \subset M^{4}$, and the following theorem is established.

Theorem 1. The sequences $M^{2 k}$ and $M^{2 k+1}, k=1,2, \cdots$, of second order set matrices are increasing.

From (1) follow also $a_{12}^{(2)} \subset a_{12}$ and $a_{21}^{(2)} \subset a_{21}$, while the assumptions $a_{11}^{(2)} \subset a_{11}$ and $a_{22}^{(2)} \subset a_{22}$ are equivalent to

$$
\begin{equation*}
a_{12} a_{21} \subset a_{11} a_{22} \tag{3}
\end{equation*}
$$

a necessary and sufficient condition that $M^{2} \subset M$. From (1) comes $a_{12}^{(2)} a_{21}^{(2)} \subset a_{11}^{(2)} a_{22}^{(2)}$, whence by (3) the inclusion $M^{4} \subset M^{2}$, and the following theorem.

Theorem 2. The sequences $M^{2 k}$ and $M^{2 k+1}, k=1,2, \cdots$, of second order set matrices are decreasing.

This theorem follows at once.
Theorem 3. Even powers of a second order transformation are identical; likewise odd powers beyond the first.

The general case. Consider the transformation

$$
T: \quad x_{i}=\sum_{j=1}^{n} a_{i j} x_{j}^{\prime}, \quad i=1,2, \cdots, n
$$

of set matrix

$$
M=\left\|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right\|
$$

where the variables and coefficients are sets of points in a space whose generality is limited only by the following assumption.

[^1](A) The elements $a_{i j}$ of M are independent point sets. That is, if products $P_{1}, P_{2}, \cdots, P_{k}, \cdots$ of elements of M are such that
$$
P_{1} \subset \sum_{k \neq 1} P_{k}
$$
there is a subscript $k=k^{\prime}$ such that ${ }^{3} P_{1} \subset P_{k^{\prime}}$.
The following theorem will presently be established.
Theorem 4. The iteration of the transformation T of order n leads to at most $(n-1)^{2}+N$ distinct transformations, where N is the least common multiple of $1,2, \cdots, n$, and at most N of these transformations recur periodically. If the coefficients of T are independent, there are precisely $(n-1)^{2}+N$ disínct transformations of which N recur periodically.

We shall denote by $a_{i j}^{(p)}$ the element in the i th row and j th column of M^{p}. Clearly $a_{i j}^{(p)}$ is a sum of products of the form

$$
P=a_{i k_{2}} a_{k_{2} k_{3}} a_{k_{3} k_{4}} \cdots a_{k_{p} j}
$$

for all distinct ways of selecting the subscripts $k_{2}, k_{3}, \cdots, k_{p}$, from the integers $1,2, \cdots, n$. The characteristic interlocking form $k_{r} k_{s}$, $k_{s} k_{t}$ of the subscripts of consecutive factors of P will be expressed in the word proper. Thus $a_{13} a_{32} a_{23} a_{32} a_{22}$ is a term of $a_{12}^{(5)}$ and a proper product, as opposed to the identical point set $a_{13} a_{32} a_{23} a_{22}$.

The order of a product P is the number of factors occurring in the product. The orders of products P, C, \cdots, will be denoted by p, c, \cdots. A cycle of P is a proper product $a_{k_{1} k_{2}} a_{k_{2} k_{3}} \cdots a_{k_{c} k_{1}}$ of factors of P in which the subscripts $k_{1}, k_{2}, \cdots, k_{c}$ are distinct. It is convenient to denote such a cycle by $C_{k_{1}}$. Thus $a_{12} a_{23} a_{33} a_{32}$ involves the cycles $C_{2}=a_{23} a_{32}, C_{3}=a_{33}$, and $C_{3}^{\prime}=a_{32} a_{23}$. A closed cycle of P is one whose factors occur consecutively in P. A product P is c-cyclic if every product of c consecutive factors is a closed cycle. It follows that these closed cycles are cyclic permutations of a single cycle C, known as the defining cycle of the product P. Thus $a_{23} a_{31} a_{12} a_{23} a_{31}$ is 3 -cyclic, with the defining cycle $C_{2}=a_{23} a_{31} a_{12}$.

Proper products are coterminal if corresponding terminal subscripts are equal. Thus $P=a_{12} a_{23} a_{34}$ and $P_{1}=a_{15} a_{54}$ are coterminal. Such products clearly are terms of elements similarly situated in set matrices M^{p} and $M^{p^{\prime}}$. It is convenient to denote a proper product $a_{i k_{2}} a_{k_{2} k_{3}} \cdots a_{k_{p} j}$ by $P_{i j}$. If coterminal proper products $P_{i j}, P_{i j}^{\prime}$ are

[^2]such that $p_{i j}^{\prime}<p_{i j}$ while $P_{i j} \subset P_{i j}^{\prime}$, we say that $P_{i j}^{\prime}$ is a contraction of $P_{i j}$, while $P_{i j}$ is an expansion of $P_{i j}^{\prime}$. Thus $a_{12} a_{23}$ is a contraction of $a_{12} a_{24} a_{42} a_{23}$, while the latter product is an expansion of the former.

The following lemmas are immediate consequences of the preceding definitions.

Lemma 1. A proper product of order exceeding $n-1$ involves a closed cycle.

Lemma 2. The deletion of a closed cycle from a proper product of greater order yields a contraction of the product.

Lemma 3. The insertion of a cycle $C_{k_{s}}$ into a proper product immediately following a factor $a_{k_{r} k_{s}}$, or immediately preceding a factor $a_{k_{9} k_{t}}$, yields an expansion of the product. Thus the appropriate insertion of $C_{1}=a_{14} a_{41}$ into $P_{12}=a_{13} a_{31} a_{12}$ yields $P_{12}^{\prime}=a_{13} a_{31} a_{14} a_{41} a_{12}$, or $a_{14} a_{41} a_{13} a_{31} a_{12}$.

Consider the sequence

$$
\begin{equation*}
P_{i j}, P_{i j}^{\prime}, P_{i j}^{\prime \prime}, \cdots, P_{i j}^{(k)} \tag{4}
\end{equation*}
$$

in which each element after the first is obtained from its predecessor by the deletion of a closed cycle. The last element can involve no cycle, or is itself a cycle, and is called a stem of $P_{i j}$. The definition is not unique, since $P_{i j}^{(k)}$ clearly varies with the sequence of cycles of $P_{i j}$ whose deletion leads to (4). Thus $a_{12} a_{23} a_{32} a_{24} a_{43}$ has the stems $a_{12} a_{23}$ and $a_{12} a_{24} a_{43}$.

From Lemmas 1 and 2 follows this lemma.
Lemma 4. A stem of a proper product P is a contraction of P which has no contraction. The order of a stem cannot exceed n.

Increasing sequences. We first prove this lemma.
Lemma 5. For every integer c not exceeding p nor n, there occurs in M^{p}, $p \geqq 2$, an element involving a term which is a c-cyclic product.

If $p=m c$ each diagonal element $a_{i i}^{(p)}$ involves certain c-cyclic terms in which a cycle C is repeated m times. If $p=m c+r, 1 \leqq r<c$, each element $a_{i j}^{(p)}, i \neq j$, involves certain c-cyclic terms in which the r th factor, and hence the p th, is $a_{k j}$. Thus, for $n \geqq 4, a_{33}^{(4)}$ involves the 2 -cyclic term $a_{31} a_{13} a_{31} a_{13}$, while $a_{24}^{(5)}$ involves the 3-cyclic term $a_{21} a_{14} a_{42} a_{21} a_{14}$.

Theorem 5. Let M be a set matrix of order n whose elements are independent. The sequence $M^{p_{1}}, M^{p_{2}}, \cdots, M^{p_{r}}, M^{p_{r+1}}, \cdots, p_{r}<p_{r+1}$, is increasing if and only if $p_{1}>n-1$, while $p_{r+1}-p_{r}$ is a multiple of $1,2, \cdots, n$.

By Lemma 1 a term P of $a_{i j}^{\left(p_{r}\right)}$ involves a closed cycle C. Since $p_{r+1}-p_{r}$ is a multiple of c we can insert appropriately into P sufficient repetitions of C to yield by Lemma 3 an expansion $\bar{P}=P$ of order p_{r+1}. Thus \bar{P} is the required term of $a_{i j}^{\left(p_{r+1}\right)}$.

Conversely, if $p_{1} \leqq n-1$ there is a term P^{\prime} of $a_{i j}^{\left(p_{1}\right)}$ involving no cycle, and which by Lemma 1 and (A) is not contained in $a_{i j}^{(p)}$ for $p=p_{2} \geqq n$. And if $p_{1}>n-1$ while $p_{r+1}-p_{r}$ is not a multiple of $c \leqq n$, there is by Lemma 5 an element $a_{i j}^{\left(p_{r}\right)}$ of $M^{p_{r}}$ involving a term P_{r} which is a c-cyclic product. Now a product P_{r+1} which contains P_{r} can by (A) involve only factors of P_{r}, and is hence c-cyclic. But since $p_{r+1}-p_{r}$ is not a multiple of c, it follows that P_{r+1} is not coterminal with P_{r}, and so is not a term of $a_{i j}^{\left(b_{r+1}\right)}$. From (A) we conclude that P_{r} is not contained in the set $a_{i j}^{\left(p_{r+1}\right)}$ and the theorem is established.

Decreasing sequences. Before proceeding we prove two lemmas.
Lemma 6. Let P be a proper product, S a sequence of cycles of P determining a stem $P^{\prime}, h=h(S)$ the highest common factor of the orders of the cycles of S, and c the greatest of these orders. There is a contraction \bar{P} of P involving every subscript of P, and such that $\bar{p} c(n-c+2)-1$, $p \equiv \bar{p}(\bmod h)$.

Consider the following sequence

$$
S^{\prime}: \quad P^{\prime}, C_{1}, C_{2}, \cdots, C_{k}
$$

in which: (i) C_{1} is a cycle of S involving a subscript not found in P^{\prime}, and has the maximum order of all such cycles. (ii) Each C following C_{1} is a cycle of S involving a subscript which has previously appeared in S^{\prime}, and one which has not done so. Further, all such cycles of S are in the sequence S^{\prime}.

It is easily shown that every subscript involved in P occurs in some cycle of S^{\prime}. For let k_{s} be the first subscript of P not found in S^{\prime}. Since k_{s} cannot occur in the stem P^{\prime}, it must first appear in P in a factor of the form $a_{k_{r} k_{s}}$. But k_{s} occurs in some cycle C^{\prime} of S, while k_{r} occurs in a cycle of S^{\prime}. We infer from (ii) that C^{\prime} is a cycle of S^{\prime}, and a contradiction is reached.

Now if the cycles $C_{1}, C_{2}, \cdots, C_{k}$ exist, at least one involves a subscript of P^{\prime}; for the contrary assumption leads to a contradiction, as in the above argument, on consideration of the first appearance in P of a subscript of $C_{1}, C_{2}, \cdots, C_{k}$. It follows that the cycles of S^{\prime} can be combined with P^{\prime} into a contraction \bar{P} of P which involves every subscript of P.

Consider now the order of \bar{P}. We have

$$
\bar{P}=p^{\prime}+\sum_{t=1}^{k} c_{t}, \quad c_{t} \leqq c
$$

If $p^{\prime} \leqq c-2, P^{\prime}$ and C_{1} together involve at least c distinct subscripts, whence $k \leqq n-c+1$, and $p \leqq c-2+c(n-c+1)<c(n-c+2)-1$. While if $p^{\prime}>c-2, P^{\prime}$ and C_{1} together involve at least $p^{\prime}+1$ distinct subscripts, whence $k \leqq n-p^{\prime}$, and $\bar{p} \leqq p^{\prime}+c\left(n-p^{\prime}\right)=c n-p^{\prime}(c-1) \leqq c n$ $-(c-1)^{2}=c(n-c+2)-1$.

The congruence $p \equiv \overline{(\bmod h)}$ follows from the definition of P^{\prime} and \bar{P}. The lemma is established.

Lemma 7. Let $c_{1}>c_{2}>\cdots>c_{m}$ be a set S_{1} of positive integers whose highest common factor is $h=h\left(S_{1}\right)$. The equation $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{m} x_{m}$ $=k$ has a non-negative integral solution ($x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{m}{ }^{\prime}$) for every integer k which is a multiple of h exceeding $\left(c_{1} c_{2} / h\right)-c_{1}-c_{2} .{ }^{4}$

Theorem 6. Let M be a set matrix of order n whose elements are independent. The sequence $M^{p_{1}}, M^{p_{2}}, \cdots, M^{p_{r}}, M^{p_{r+1}}, \cdots, p_{r}<p_{r+1}$, is decreasing if and only if $p_{1}>(n-1)^{2}$, while $p_{r+1}-p_{r}$ is a multiple of $1,2, \cdots, n$.

Sufficiency. For any term P of $a_{i j}^{\left(p_{r+1}\right)}$; the theorem asserts the existence of a term P_{1} of $a_{i j}^{\left(p_{r}\right)}$ such that $P \subset P_{1}$. Our procedure is to insert into a contraction of P appropriate cycles of P of the precise total order required to yield the desired product P_{1}.

Let P^{\prime} be a stem of P, determined by a sequence S of cycles of P. Let \bar{P} be the contraction of P presented in Lemma 6; and let $S_{1}: C_{1}, C_{2}, \cdots, C_{m}$, be cycles of S among whose orders, $c_{1}>c_{2}>\cdots>c_{m}$ occur all orders of cycles of S. If $m=1$, the required term P_{1} is clearly encountered in the sequence (4) of products defining P^{\prime}.

Case 1. $c_{1}<n$.
By Lemma 6 we have

$$
\begin{aligned}
p_{r}-\bar{p}>(n-1)^{2} & -c_{1}\left(n-c_{1}+2\right)+1 \\
& =c_{1}\left(c_{1}-1\right)-c_{1}-\left(c_{1}-1\right)+(n-1)\left(n-c_{1}-1\right)
\end{aligned}
$$

whence

$$
\begin{equation*}
p_{r}-\bar{p}>c_{1}\left(c_{1}-1\right)-c_{1}-\left(c_{1}-1\right) \geqq \frac{c_{1} c_{2}}{h}-c_{1}-c_{2} \tag{5}
\end{equation*}
$$

Now by the same lemma, $p_{r+1}-\bar{p} \equiv 0(\bmod h)$, hence from $p_{r+1}-p_{r} \equiv 0$ $(\bmod h)$ follows

[^3]\[

$$
\begin{equation*}
p_{r}-\bar{p} \equiv 0(\bmod h) \tag{6}
\end{equation*}
$$

\]

By (5), (6), and Lemma 7 there is established the existence of nonnegative integers, $x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{m}{ }^{\prime}$ such that

$$
\bar{p}+\sum_{t=1}^{m} c_{t} x_{t}^{\prime}=p_{r}
$$

By Lemmas 6 and 3 we can insert the cycles $C_{1}, C_{2}, \cdots, C_{m}$ into \bar{P} and obtain the required product P_{1}.

Case 2. $c_{1}=n, c_{2}<n-1$.
Again by Lemma 6

$$
\begin{aligned}
p_{r}-\bar{p}>(n-1)^{2}- & c_{1}\left(n-c_{1}+2\right)+1 \\
& =c_{1}\left(c_{1}-2\right)-c_{1}-\left(c_{1}-2\right)+(n-2)\left(n-c_{1}\right)
\end{aligned}
$$

whence

$$
p_{r}-p>c_{1}\left(c_{1}-2\right)-c_{1}-\left(c_{1}-2\right) \geqq \frac{c_{1} c_{2}}{h}-c_{1}-c_{2},
$$

and the proof proceeds as in Case 1.
Case 3. $c_{1}=n, c_{2}=n-1$.
Here the contraction P^{\prime}, instead of \bar{P}, is employed. We have by Lemma 4

$$
p_{r}-p^{\prime}>(n-1)^{2}-n=c_{1} c_{2}-c_{1}-c_{2} .
$$

Since $h=1$ it follows by Lemma 7 that non-negative integers, $x_{1}^{\prime}, x_{2}^{\prime}$, exist such that $p^{\prime}+c_{1} x_{1}^{\prime}+c_{2} x_{2}^{\prime}=p_{r}$. Thus since P^{\prime} must involve a subscript of C_{1} and C_{2}, it is possible to insert the cycles C_{1}, C_{2}, into P^{\prime} and obtain by Lemma 3 the required product P_{1}.

Necessity. As in Theorem 5 it can be shown that $p_{r+1}-p_{r}$ must be a multiple of $1,2, \cdots, n$; while for the condition $p_{1}>(n-1)^{2}$, it will suffice to produce a term of an element of $M^{p 2}$ which is not contained in the corresponding element of $M^{p_{1}}$, although $p_{2}-p_{1}$ is a multiple of $1,2, \cdots, n$.

Consider the n-cyclic product P_{1}^{\prime} of order $p_{1}+n-1$ whose defining cycle is $C_{1}=a_{12} a_{23} \cdots a_{n 1}$, and the ($n-1$)-cyclic product P_{2}^{\prime} of order $p_{2}-p_{1}-n+1$ whose defining cycle is $C_{2}=a_{23} a_{34} \cdots a_{n 2}$. By inserting P_{2}^{\prime} into P_{1}^{\prime} following any factor a_{12}, a proper product P of order p_{2} is obtained which is a term of an element of the first row of $M^{p 2}$. Now from (A) and the structure of P it follows that any proper coterminal product containing P can be had from P by deletion of the cycles C_{1}, C_{2}. We are thus led to the equation

$$
\begin{equation*}
n x_{1}+(n-1) x_{2}=p_{2}-p_{1} \tag{7}
\end{equation*}
$$

with the restrictions

$$
\begin{equation*}
n x_{1} \leqq p_{1}+n-1, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
(n-1) x_{2} \leqq p_{2}-p_{1}-n+1 \tag{9}
\end{equation*}
$$

By (7) and (9), x_{1} is a positive multiple of $n-1$, while from $p_{1} \leqq(n-1)^{2}$ we have by (8), $n x_{1} \leqq n(n-1)$. Thus $x_{1}=n-1$, but it is clear that the deletion of $n-1$ cycles C_{1} from P will yield a product ${ }^{5}$ whose first factor is a_{23}. From (A) it follows that P is not contained in the corresponding element of $M^{p_{1}}$, and the theorem is established.

Equality of matrices. Theorems 5 and 6 provide conditions for increase and decrease, respectively, in a sequence of ascending powers of M. In summation we have the following theorem:

Theorem 7. Let M be a set matrix of order n whose elements are independent. The equality $M^{p_{1}}=M^{p_{2}}, p_{2}>p_{1}$, holds if and only if $p_{1}>(n-1)^{2}$, while $p_{2}-p_{1}$ is a multiple of $1,2, \cdots, n$.

Theorem 4 is an immediate consequence.
Southwestern Louisiana Institute

[^4]
[^0]: Presented to the Society, December 30, 1941 under the title On powers of a matrix whose elements are sets of points; received by the editors August 25, 1941.
 ${ }^{1}$ Lowenheim, Über Transformationen im Gebietekalkuil, Mathematische Annalen, vol. 73 (1913), pp. 245-272; Gebietsdetermination, Mathematische Annalen, vol. 79 (1919), pp. 223-236.

[^1]: ${ }^{2}$ The symbol \subset denotes inclusion.

[^2]: ${ }^{3}$ Thus, under (A), such inclusions as $a_{12} a_{23} \subset P=a_{14}+a_{13} a_{32}$ cannot hold, since P does not involve one of the terms $a_{12}, a_{23}, a_{12} a_{23}$.

[^3]: ${ }^{4}$ This lemma is readily established by mathematical induction. However, a better bound on k, namely, $\left(c_{1} c_{n} / h\right)-c_{1}-c_{m}$ has been communicated to the author by Dr. Alfred Brauer.

[^4]: ${ }^{5}$ Thus for $n=3, p_{1}=4, p_{2}=10$, we have $P=a_{12} a_{23} a_{32} a_{23} a_{32} a_{25} a_{31} a_{12} a_{23} a_{31}$ which has no contraction of order 4 .

