ON 3-DIMENSIONAL MANIFOLDS

C. E. CLARK

Let P be a 3-dimensional manifold. ${ }^{1}$ Let Q be a 2 -dimensional manifold imbedded in P. Moreover, let P and Q admit of a permissible simplicial division K, that is, a simplicial division of P such that some subcomplex of K, say L, is a simplicial division of Q. Let K_{i} and L_{i} denote the i th normal subdivisions of K and L, respectively. We define the neighborhood N_{i} of L_{i} to be the simplicial complex consisting of the simplexes of K_{i} that have at least one vertex in L_{i} together with the sides of all such simplexes. By the boundary B_{i} of N_{i} we mean the simplicial complex consisting of the simplexes of N_{i} that have no vertex in L_{i}. Our purpose is to prove the following theorem.

Theorem. The boundary B_{2} is a two-fold but not necessarily connected covering of Q, and change of permissible division K replaces B_{2} by a homeomorph of itself.

Proof. The neighborhood N_{1} is the sum of a set of 3-dimensional simplexes. Some of these 3 -simplexes, say a_{1}, a_{2}, \cdots, have exactly one vertex in L_{1}, others, say b_{1}, b_{2}, \cdots, have exactly two vertices in L_{1}, while the remaining, say c_{1}, c_{2}, \cdots, have three vertices in L_{1}. Since K_{1} is a normal subdivision of K, the intersection of L_{1} and b_{i} or c_{i} is a 1 -simplex or 2 -simplex, respectively. Let α_{i}, β_{i}, and γ_{i} be the intersections of B_{2} and a_{i}, b_{i}, and c_{i}, respectively. We shall regard α_{i} and γ_{i} as triangles with vertices on the 1 -simplexes of a_{i} and c_{i}. Also we shall regard β_{i} as a square with vertices on the 1 -simplexes of b_{i}.

Any 2 -simplex of L_{1}, say $A B C$, is incident to exactly two of the c_{i}. Let $c_{1}=A B C M$. There is a unique 3 -simplex of N_{1}, say σ, that is incident to $A B M$ and different from c_{1}. This σ is either a c_{i}, say c_{2}, or a b_{i}, say b_{2}. If σ is c_{2}, then the triangles γ_{1} and γ_{2} have a common side. Suppose that σ is $b_{2}=A B M N$. The 2 -simplex $A B N$ is incident to a unique 3 -simplex of N_{1}, say τ, with $\tau \neq A B M N$. This τ is either c_{3} or b_{3}. If $\tau=b_{3}$, there is a c_{4}, or b_{4}. Finally we must find a $c_{p}=A B D S, D$ in L_{1}, S in B_{1}. We now consider $\beta_{2}, \beta_{3}, \cdots$, and β_{p-1}. The sum of these squares is topologically equivalent to a square. One side of the square is coincident with a side of γ_{1} and the opposite side coincident with a side of γ_{p}.

[^0]Since K_{1} is a manifold, we can repeat the construction and associate with $A B C$ and $A B D$ a second pair of triangles in B_{2} that are either incident along a common side or incident to opposite sides of a square. But there is not a third such configuration associated with $A B C$ and $A B D$. We repeat the construction for all pairs of adjacent 2 -simplexes of L_{1}. Then to each 2 -simplex of L_{1} there correspond two triangles in B_{2}. Moreover, if two 2 -simplexes of L_{1} are incident along a side, the four corresponding triangles can be paired so that the two triangles of each pair either have a common side or are incident to opposite sides of a square.

Since P and Q are 3- and 2-manifolds, respectively, we can say that Q is two-sided in P in the neighborhood of any point of Q. Moreover, the two γ 's of B_{2} that correspond to a 2 -simplex of L_{1} lie on opposite sides of Q (in the neighborhood of this 2 -simplex).

Consider a vertex X of L_{1} and the 2 -simplexes Δ_{i} of L_{1} that have X as a vertex. On one side of Q (in the neighborhood of X) there corresponds to each Δ_{i} a unique γ_{i}, and the γ 's have the same incidences as the corresponding Δ 's (we say that two γ 's are incident if they are incident to opposite sides of a square). Let us denote by R the points of these γ 's and the squares incident to pairs of these γ 's. Let A denote the points of all α_{i} 's that are in a_{i} 's incident to X and on the side of Q that we are considering.

We shall show that $R+A$ is a 2 -cell. To do this we shall show that $R+A$ is a manifold relative to its boundary, that its boundary consists of one or more circles, and that any 1 -cycle of $R+A$ bounds in $R+A$. First we observe that B_{2} is a manifold; this fact follows from the structure of B_{2} and the fact that K_{1} is a manifold; the argument is elementary and we omit it. Since $R+A$ is the sum of 2 -cells α, β, and γ, the set $R+A$ is a manifold relative to its boundary.

To show that this boundary of $R+A$ consists of one or more circles we shall study the incidences among the cells of $R+A$. First, let a_{i} have X as a vertex. If a 2-dimensional side of a_{i} is not in B_{1}, this side must be a side of an a_{j} or b_{j}. Furthermore, this a_{j} or b_{j} has X as a vertex. Hence, any side of an α_{i} is also a side of an α_{j} or β_{j} of $R+A$. Next, let c_{i} have vertices $X A B M, M$ in B_{1}. The sides of γ_{i} that are in $X A M$ and $X B M$ are sides of γ_{j}^{\prime} 's or β_{j} 's of $R+A$. But the side of γ_{i} in $A B M$ is not incident to any other 2-cell of $R+A$. This side is part of the boundary of $R+A$. Finally, let b_{i} have vertices $X A M N, A$ in L_{1}. The sides of β_{i} in $X A M$ and $X A N$ are incident to sides of β_{j} 's or γ_{j} 's of $R+A$; the side of β_{i} in $X M N$ is incident to an α_{j} or β_{j} of $R+A$; but the side of β_{i} in $A M N$ is not incident to any other 2-cell of $R+A$. This side is part of the boundary of $R+A$. Examination of
the segments of the boundary of $R+A$ shows that they fit together to form one or more circles.

We next show that if C is a 1 -dimensional cycle of $R+A$, then C bounds in $R+A$. We shall find it convenient to replace A by a new set that will never be empty. We define A^{\prime} to be A together with all vertices of γ 's of R that are not in the boundary of $R+A$ and all sides of squares of R that are not sides of γ 's of R and not in the boundary of $R+A$. If A is not empty, the set A^{\prime} is the same as A. But in any case A^{\prime} is not empty, and $R+A^{\prime}$ is the same set as $R+A$. The set $\left(R+A^{\prime}\right)-\bar{A}^{\prime}$ is homeomorphic to a 2 -cell with an inner point removed because $\left(R+A^{\prime}\right)-\bar{A}^{\prime}$ can be obtained from the configuration of the 2 -simplexes of L_{1} that have X as a vertex by removing X and replacing some of the 1 -simplexes by squares (open along one side). Hence, the cycle C is homologous in $R+A^{\prime}$ to a cycle on A^{\prime}, and we assume that C is on A^{\prime}. The set A^{\prime} is part of b, the boundary of the combinatorial neighborhood of X in K_{2}. Since K_{2} is a manifold, the set b is a 2 -sphere. Assume that C does not bound in A^{\prime}. Then C must surround a 2 -simplex of b that is not in A^{\prime}. We easily find a 2 -simplex of $R+A^{\prime}$ that is not incident along one of its sides to another 2 -simplex of the manifold B_{2}. This contradiction proves that C bounds, and the proof that $R+A$ is a 2 -cell is complete.

Now we draw some lines on $R+A$. If two γ 's have a common side, we draw a line coincident with this common side. If two γ 's are incident to a square, we draw a line across the square half way between the γ 's. All these lines are continued so that they meet at a point of A. These lines give a subdivision of $R+A$ that is combinatorially equivalent to the combinatorial neighborhood of X in L_{1}. The lines can be drawn for all $R+A$ of B_{2} and we get a subdivision of B_{2} that is combinatorially equivalent to a two-fold but not necessarily connected covering of L_{1}.

A triangle of the covering is associated with a 2 -simplex of L_{1} and a side of Q (in the neighborhood of this simplex). Hence, a homeomorphism is determined between this covering and any covering obtained by changing the permissible division K.

The theorem is not true with B_{1} rather than B_{2}. For example, let Q be the boundary of a 3 -simplex of K. Then B_{1} is a sphere and a point.

We can prove the following theorem in the same way but with much less effort.

Theorem. The above theorem is true if P and Q are replaced by 2- and 1-dimensional manifolds.

[^0]: Received by the editors July 21, 1941.
 ${ }^{1}$ Our terminology is that of Seifert-Threlfall, Lehrbuch der Topologie. Manifolds are finite, while simplexes and cells are closed point sets.

