all integral functions $f(z)$ satisfying the conditions $f(t) \in L_{1}, \mathfrak{G} f \in L_{1}$, $|f(z)|<K_{f, \epsilon} \exp \{(2 \alpha+\epsilon)|z|\}$. The proof is based upon a result due to Plancherel and Pólya. ${ }^{12}$

The University,
Edgbaston, Birmingham, England
${ }^{32}$ Commentarii Mathematici Helvetici, vol. 10 (1937-1938), pp. 110-163, §27.

THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED FRACTIONS NEAR THE SINGULAR LINE

H. S. WALL

1. Introduction. We consider here continued fractions of the form ${ }^{1}$

$$
\begin{equation*}
f(z)=\frac{g_{0}}{1}+\frac{g_{1} z}{1}+\frac{\left(1-g_{1}\right) g_{2} z}{1}+\frac{\left(1-g_{2}\right) g_{3} z}{1}+\cdots \tag{1.1}
\end{equation*}
$$

in which $g_{0} \geqq 0,0 \leqq g_{n} \leqq 1,(n=1,2,3, \cdots)$, it being agreed that the continued fraction shall terminate in case some partial numerator vanishes identically. There exists a monotone non-decreasing function $\phi(u), 0 \leqq u \leqq 1$, such that

$$
\begin{equation*}
f(z)=\int_{0}^{1} \frac{d \phi(u)}{1+z u} \tag{1.2}
\end{equation*}
$$

and, conversely, every integral of this form is representable by such a continued fraction. Put $M(f)=1$.u.b. $|z|<1|f(z)|$. Then $M(f) \leqq 1$ if and only if the continued fraction can be written in the form

$$
\begin{equation*}
f(z)=\frac{h_{1}}{1}+\frac{\left(1-h_{1}\right) h_{2} z}{1}+\frac{\left(1-h_{2}\right) h_{3} z}{1}+\cdots \tag{1.3}
\end{equation*}
$$

in which $0 \leqq h_{n} \leqq 1,(n=1,2,3, \cdots)$. These functions are analytic in the interior of the z-plane cut along the real axis from $z=-1$ to $z=-\infty$.

The principal object of this paper is to prove the following theorem:
Theorem 1.1. If $0<h_{n}<1,(n=1,2,3, \cdots)$, and $h_{n} \rightarrow 1 / 2$ in such a way that the series $\sum\left|h_{n}-1 / 2\right|$ converges, then the function $f(z)$ given

[^0]by (1.3) approaches a finite limit $\alpha(s)$ as $z \rightarrow-s, s \geqq 1$, from the upper half-plane, and the limit $\overline{\alpha(s)}$, the complex conjugate of $\alpha(s)$, as $z \rightarrow-s$ from the lower half-plane. The function $\alpha(s)$ is continuous, and is real if and only if $s=1$. There is a constant C such that $|f(z)|<C$ over the entire plane of z exterior to the cut along the real axis from $z=-1$ to $z=-\infty$.

Inasmuch as the function (1.1) can be written in the form $f(z)=g_{0} /\left[1+z f^{*}(z)\right]$, where $f^{*}(z)$ has the form (1.3), one may conclude at once that if $g_{0}>0,0<g_{n}<1,(n=1,2,3, \cdots), \sum\left|g_{n}-1 / 2\right|$ converges, then the function $f(z)$ given by (1.1) approaches a finite limit $\beta(s)$ as $z \rightarrow-s, s>1$, from the upper half-plane, and the limit $\overline{\beta(s)}$ as $z \rightarrow-s$ from the lower half-plane. The function $\beta(s)$ is continuous and not real for $s>1$. The function $f(z)$ given by (1.1) may become infinite as $z \rightarrow-1$, for example, if $g_{0}=1, g_{n}=1 / 2(n=1,2,3, \cdots)$, then $f(z)=(1+z)^{-1 / 2}$.
2. Proof of Theorem 1.1. There is a one to one correspondence between functions of the form (1.3) and functions $e(x)$ which are real when x is real, analytic for $|x|<1$, and for which $M(e) \leqq 1$, such that if $f(z) \leftrightarrow e(x)$ then ${ }^{2}$

$$
\begin{equation*}
\frac{1}{2}(1-x) \frac{1-e(x)}{1+x e(x)}=f(z), \quad z=4 x /(1-x)^{2}, \quad|x|<1 \tag{2.1}
\end{equation*}
$$

(i) The transformation $z=4 x /(1-x)^{2}$ maps the interior of the circle $|x|=1$ one to one upon the interior of the z-plane cut along the real axis from $z=-1$ to $z=-\infty$. Hence it follows at once from (2.1) that if $M(e)<1$, then

$$
|f(z)| \leqq \frac{1+M(e)}{1-M(e)}=C
$$

over the entire domain of analyticity of $f(z)$.
(ii) In (2.1) put $x=\xi+i \eta, e(x)=u+i v, f(z)=P+i Q$, where ξ, η, u, v, P, Q are all real. We then find for Q the value

$$
\begin{equation*}
Q=\frac{\eta\left(u^{2}+v^{2}-1\right)+v\left(\xi^{2}+\eta^{2}-1\right)}{2|1+x e(x)|^{2}} . \tag{2.2}
\end{equation*}
$$

If $s \geqq 1, \sigma=\left[s-2+2 i(s-1)^{1 / 2}\right] / s$, so that $|\sigma|=1$, then as $x \rightarrow \sigma$ from the interior of the circle $|x|=1, z$ must approach $-s$ from the upper half-plane. If $M(e)<1$, and $e(x)$ approaches a limit $e(\sigma)$ as $x \rightarrow \sigma$, $|x|<1$, then it follows from (2.1) that $f(z)$ approaches a finite limit

[^1]$\alpha(s)$ as $z \rightarrow-s$ from the upper half-plane; and from (2.2) it follows that Q has the limit
\[

$$
\begin{equation*}
\frac{(s-1)^{1 / 2}}{s} \cdot \frac{|e(\sigma)|^{2}-1}{|1+\sigma e(\sigma)|^{2}} \tag{2.3}
\end{equation*}
$$

\]

where is zero if and only if $s=1$. Hence $\alpha(s)$ is real if and only if $s=1$. Inasmuch as $f(\bar{z})=\overline{f(z)}$, it follows that $f(z)$ has the limit $\overline{\alpha(s)}$ as $z \rightarrow-s$ from the lower half-plane. Clearly $\alpha(s)$ is continuous if $e(x)$ is continuous for $|x| \leqq 1$.
(iii) To complete the proof of Theorem 1.1 it remains to be proved that when $\sum\left|h_{n}-1 / 2\right|$ converges then $M(e)<1$ and $e(x)$ is continuous for $|x| \leq 1$. Put $e_{0}(x)=e(x)$,

$$
\begin{equation*}
e_{n+1}(x)=\frac{1}{x} \frac{t_{n}-e_{n}(x)}{1-t_{n} e_{n}(x)}, \quad t_{n}=e_{n}(0) ; n=0,1,2, \cdots \tag{2.4}
\end{equation*}
$$

Then $t_{n-1}=1-2 h_{n}(n=1,2,3, \cdots)$. Now, Schur ${ }^{3}$ proved that if $\left|t_{n-1}\right|<1,(n=1,2,3, \cdots)$, and $\sum\left|t_{n}\right|$ is convergent, then $M(e)<1$, and $e(x)$ is continuous for $|x| \leqq 1$. Since $0<h_{n}<1$ by hypothesis, it follows that $-1<t_{n-1}<1$; and since the series $\sum\left|h_{n}-1 / 2\right|$ converges by hypothesis, it follows that $\sum\left|t_{n}\right|$ converges.

This completes the proof of Theorem 1.1.
It will be seen from (2.3) that if $f(z)$ has a real limit as $z \rightarrow-s, s>1$, then $M(e)=1$. This is true also if $f(z)$ becomes infinite as $z \rightarrow-s, s \geqq 1$, and in this case $e(x) \rightarrow-1 / \sigma$ as $x \rightarrow \sigma$. Inasmuch as $\lim _{z \rightarrow-s}(z+s) f(z)=0$, $\lim _{z \rightarrow \infty} f(z)=0$, if $M(e)<1$, it follows that the corresponding mass function $\phi(u)$ (cf. (1.2)), is continuous for $0 \leqq u \leqq 1$ in this case. ${ }^{4}$
3. An example. If we apply the transformation (2.4) to a function $f(z)$ of the form (1.3) we obtain a sequence of functions $f_{0}(z)=f(z)$, $f_{1}(z), f_{2}(z), \cdots$ all having continued fraction expansions of the same character as that of $f(z)$. Suppose that in (1.3), $0<h_{n}<1$, ($n=1,2,3, \cdots$), and that the series $\sum\left|h_{n}-1 / 2\right|$ converges. On applying Theorem 1.1 we find at once that as $z \rightarrow-s, s \geqq 1, I(z)>0$:

$$
\lim f_{1}(z)=-\frac{1}{s} \frac{g_{1}-\alpha(s)}{1-g_{1} \alpha(s)}=\alpha_{1}(s)
$$

and that $\alpha_{1}(s)$ is real if and only if $s=1 ; \alpha_{1}(1)=1 ; \alpha_{1}(s)$ is continuous for $s \geqq 1$. By mathematical induction, $f_{2}(z), f_{3}(z), \cdots$ also have this

[^2]property. Let $h_{1}^{\prime} / 1+\left(1-h_{1}^{\prime}\right) h_{2}^{\prime} z / 1+\left(1-h_{2}^{\prime}\right) h_{3}^{\prime} z / 1+\cdots$ be the continued fraction for $f_{1}(z)$. Then we shall prove that $\sum\left|h_{n}^{\prime}-1 / 2\right|$ may diverge although $\sum\left|h_{n}-1 / 2\right|$ converges, and that the convergence of the series $\sum\left|h_{n}-1 / 2\right|$ is not necessary in order that the conclusion in Theorem 1.1 shall hold. For this purpose, let $h_{n}=1 / 2$, $(n=1,2,3, \cdots)$. Then $f(z)=1 /\left[1+(1+z)^{1 / 2}\right],(f(0)=1 / 2)$, and $f_{1}(z)=1 /\left[1+(1+z)^{1 / 2}\right]\left[1+2(1+z)^{1 / 2}\right],\left(f_{1}(0)=1 / 6\right)$. The function $f_{1}(z)$ has the properties stated in Theorem 1.1 for the function $f(z)$ of that theorem, excepting that, as we shall see, the series $\sum\left|h_{n}{ }^{\prime}-1 / 2\right|$ diverges. In fact, $h_{2 n}^{\prime}=(4 n+3) / 2(4 n+1), h_{2 n-1}^{\prime}=(4 n-3) / 2(4 n-1)$, ($n=1,2,3, \cdots$), in consequence of the following theorem:

Theorem 3.1. Let k be a parameter subject only to the conditions

$$
\begin{equation*}
k \neq(3-4 n) / 2, \quad(1-4 n) / 2, \quad n=1,2,3, \cdots, \tag{3.1}
\end{equation*}
$$

and put

$$
\begin{aligned}
h_{2 n-1}^{(k)} & =(4 n-3) / 2(4 n-3+2 k), \\
h_{2 n}^{(k)} & =(4 n-1+4 k) / 2(4 n-1+2 k), \quad n=1,2,3, \cdots .
\end{aligned}
$$

Then the continued fraction $f_{k}(z)=h_{1}^{(k)} / 1+\left(1-h_{1}^{(k)}\right) h_{2}^{(k)} z / 1+$ $\left(1-h_{2}^{(k)}\right) h_{3}^{(k)} z / 1+\cdots$ converges uniformly in a sufficiently small neighborhood of $z=0$, and the analytic function $f_{k}(z)$ satisfies the relation

$$
\begin{equation*}
f_{k+1}(z)=\frac{1}{z} \frac{h_{1}^{(k)}-f_{k}(z)}{1-h_{1}^{(k)} f_{k}(z)} \tag{3.2}
\end{equation*}
$$

Proof. The uniform convergence follows from the fact that all the partial numerators after the first are numerically less than or equal to $1 / 4$ for z in a sufficiently small neighborhood of the origin. To prove (3.2), write the right-hand member in the form:

$$
\begin{array}{r}
\frac{1}{z}\left\{h_{1}^{(k)}-\frac{1-\left(h_{1}^{(k)}\right)^{2}}{-h_{1}^{(k)}+1 / f_{k}(z)}\right\}=\frac{1}{z}\left\{h_{1}^{(k)}-\frac{h_{1}^{(k)}}{1}+\frac{h_{2}^{(k)} z /\left(1+h_{1}^{(k)}\right)}{1}\right. \\
\left.+\frac{\left(1-h_{2}^{(k)}\right) h_{3}^{(k)} z}{1}+\frac{\left(1-h_{3}^{(k)}\right) h_{4}^{(k)} z}{1}+\ldots\right\} .
\end{array}
$$

We are to show that this is equal to $f_{k+1}(z)$. This can be done by showing that the odd part of the last continued fraction is identical with
the even part of the continued fraction for $f_{k+1}(z)$. We omit here the details of the calculation. ${ }^{5}$

Let $e_{n}(x) \leftrightarrow f_{n}(z),(n=0,1,2, \cdots)$. Then we find for the e_{n} 's the following recursion formulas:

$$
\begin{equation*}
e_{n+1}(x)=\frac{1}{x} \frac{k_{n}+\left(2-k_{n}\right) x+(3 x-1) e_{n}(x)}{(3-x)+\left(2-k_{n}+k_{n} x\right) e_{n}(x)}, \quad k_{n}=e_{n}(0), \tag{3.3}
\end{equation*}
$$

($n=0,1,2, \cdots$). For the special example under consideration, $e(x)=e_{0}(x) \equiv 0$ and $e_{1}(x)=2 /(3-x)$. Hence, although $M(e)<1$ in this case, nevertheless $M\left(e_{1}\right)=1$. From the way in which (3.3) was obtained it follows that if $e_{0}(x)$ is an arbitrary function which is real when x is real, analytic for $|x|<1$, and such that $M\left(e_{0}\right) \leqq 1$, then the functions $e_{1}(x), e_{2}(x), \cdots$ are all of this same character.

Northwestern University
${ }^{5}$ O. Perron, Die Lehre von den Kettenbrü̈chen, 2d edition, Leipzig and Berlin, 1929 p. 201.

[^0]: Presented to the Society, October 25, 1941; received by the editors August 14, 1941.
 ${ }^{1}$ H. S. Wall, Continued fractions and totally monotone sequences, Transactions of this Society, vol. 48 (1940), pp. 165-184.

[^1]: ${ }^{2}$ H. S. Wall, Some recent developments in the theory of continued fractions, this Bulletin, vol. 47 (1941), pp. 405-423; Theorem 5.1, p. 415.

[^2]: ${ }^{3}$ I. Schur, Über Potenzreihen, die im Innern des Einheitskrieses beschränkt sind, Journal für die reine und angewandte Mathematik, vol. 147 (1916), pp. 205-232, and vol. 148 (1917), pp. 122-145.
 ${ }^{4}$ I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mathematische Zeitschrift, vol. 28 (1928), pp. 171-199; p. 179.

