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all integral functions f(z) satisfying the conditions f if) £ L i , £>ƒ G£i , 
|ƒ(2)| <K/,e exp { ( 2 a + e ) | s | }. The proof is based upon a result due 
to Plancherel and Pólya.12 
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THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED 
FRACTIONS NEAR THE SINGULAR LINE 

H. S. WALL 

1. In t roduc t ion . W e consider here cont inued fractions of the form1 

go glZ (1 - gl)g2* (1 - g2)g32 
(1.1) ƒ(*) = 

1 + 1 + 1 + 1 + 

in which go^O, 0 ^ g n ^ 1, (w = l, 2, 3, • • • ), it being agreed that the 
continued fraction shall terminate in case some partial numerator 
vanishes identically. There exists a monotone non-decreasing function 
<fi(u), O ^ w ^ l , such that 

(1 .2 ) ƒ(*) 
Jo 1 

d(j>(u) 

+ zu 

and, conversely, every integral of this form is representable by such a 
continued fraction. Put M(/)=l.u.b. |«i<i | / ( * ) | . Then M ( / ) ^ l if and 
only if the continued fraction can be written in the form 

hi (1 - hi)h2z (1 - h2)hzz 
(1.3) f{z) = — 

1 + 1 + 1 +• • • , 
in which 0t>hn^ 1, (n — l, 2, 3, • • • ). These functions are analytic in 
the interior of the s-plane cut along the real axis from z = — 1 to 
z— _ 0 0 . 

The principal object of this paper is to prove the following theorem : 

THEOREM 1.1. If 0 < / ^ n < l , (w = l, 2, 3, • • • ), and hn-^\/2 in such 
a way that the series 1C | hn—1/21 converges, then the function f (z) given 
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1 H. S. Wall, Continued fractions and totally monotone sequences, Transactions of 
this Society, vol. 48 (1940), pp. 165-184. 
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by (1.3) approaches a finite limit a(s) as z-+ — s, s^1, from the upper 
half-plane, and the limit a(s), the complex conjugate of a(s), as z—* — s 
from the lower half-plane. The function a{s) is continuous, and is real if 
and only if s = 1. There is a constant C such that \f(z) | < C over the entire 
plane of z exterior to the cut along the real axis from z— — \ to z— — GO. 

Inasmuch as the function (1.1) can be written in the form 
f(z) =go/[l+zf*(z)], wheref*(z) has the form (1.3), one may conclude 
at once that if go>0, 0 < g n < l , (w = l, 2, 3, • • • ), ]C!#»""" V 2 | con
verges, then the funct ion/^) given by (1.1) approaches a finite limit 
j8(s) as z—> — s, s>l, from the upper half-plane, and the limit fi(s) as 
z—» — s from the lower half-plane. The function fi(s) is continuous and 
not real for s>l. The function ƒ (z) given by (1.1) may become infinite 
as z—>— 1, for example, if go = l, gn = l /2 {n — \, 2, 3, • • • ), then 
f(z) = (l+z)-u\ 

2. Proof of Theorem 1.1. There is a one to one correspondence be
tween functions of the form (1.3) and functions e(x) which are real 
when x is real, analytic for \x\ < 1, and for which M(e) ^ 1, such that 
iîf(z)<r*e(x) then2 

(2.1) - 1 ( 1 - x) *~6(*\ = ƒ(*), s = 4 * / ( l - * ) > , h l < l . 
2 1 + xe{x) 

(i) The transformation z = 4x/( l — x)2 maps the interior of the circle 
| x | = 1 one to one upon the interior of the z-plane cut along the real 
axis from z= — I to z= — °o. Hence it follows at once from (2.1) that 
if M(e)<l, then 

, 1 + M(e) 

1 — M(e) 

over the entire domain of analyticity of f{z). 
(ii) In (2.1) put x = %+irj, e(x) =u+iv, f(z) =P+iQ, where £, rj, 

u, v, P, Q are all real. We then find for Q the value 

n 9 . n __ vW + a2 - 1) + <¥ + v2 - 1) 

2 I 1 + xe(x) |2 

If 5 ^ 1 , cr= [5 — 2 + 2i(s —l)1/2]/s, so that \a\ = 1 , then as x—xr from 
the interior of the circle \x\ = 1 , z must approach —s from the upper 
half-plane. If M{e)<\, and e(x) approaches a limit e(cr) as x—>cr, 
\x\ < 1 , then it follows from (2.1) that ƒ(z) approaches a finite limit 

2 H. S. Wall, Some recent developments in the theory of continued fractions, this Bulle
tin, vol. 47 (1941), pp. 405-423; Theorem 5.1, p. 415. 
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a(s) as z—^ — s from the upper half-plane; and from (2.2) it follows 
that Q has the limit 

(s- l ) 1 ' 2 I e(a)\2 - 1 
(2.3) y — ^ r , 

^ | l + crc(cr)|2 

where is zero if and only if 5 = 1. Hence a(s) is real if and only if s = 1. 
Inasmuch as/(z) =f(z), it follows that ƒ (z) has the limit a(s) as z—> — s 
from the lower half-plane. Clearly a(s) is continuous if e(x) is con
tinuous for \x\ ^ 1 . 

(iii) To complete the proof of Theorem 1.1 it remains to be proved 
that when X^| hn —1/21 converges then M(e) < 1 and e(x) is continu
ous for | x | < 1. Put e0(x) =e(x), 

(2.4) en+i(x) = — -^ ! ! — > /n = en(0); n = 0, 1, 2, • • • . 

Then /n_i = l —2/^ (w = l, 2, 3, • • • ). Now, Schur3 proved that if 
|*„_i| < 1 , (w = l, 2, 3, • • • ), a n d ^ | / w | is convergent, then M(e) < 1 , 
and e(x) is continuous for \x\ g l . Since 0 < & n < l by hypothesis, it 
follows that — 1 <tn-\ < 1 ; and since the series converges 
by hypothesis, it follows that]>2| / n | converges. 

This completes the proof of Theorem 1.1. 
I t will be seen from (2.3) that if f(z) has a real limit as z—» — s, s > 1, 

then M{e) = 1. This is true also if f(z) becomes infinite as z—> — s, s ^ 1, 
and in this case e (#) —>— l/aasx-^a. Inasmuch as Km*^_s (z+s)f(z) = 0, 
lime->oof(z) = 0 , if M(e)<l, it follows that the corresponding mass 
function <f>(u) (cf. (1.2)), is continuous for O ^ w ^ l in this case.4 

3. An example. If we apply the transformation (2.4) to a function 
f(z) of the form (1.3) we obtain a sequence of functions ƒ0(2) = ƒ(2), 
ƒi(z), ƒ2(2), * * • all having continued fraction expansions of the 
same character as that of f(z). Suppose that in (1.3), 0<hn<ly 

(n = l, 2, 3, • • • ), and that the series X)| hn —1/21 converges. On ap
plying Theorem 1.1 we find at once that as z—> — s, s*tl, I(z) > 0 : 

1 gi — OL(S) 

lim fi(z) = — = ai(s) ; 
s 1 - gia(s) 

and that ai(s) is real if and only if s = 1 ; ai(l) = 1 ; ai(s) is continuous 
for s*zl. By mathematical induction, ƒ2(z), f3(z), • • • also have this 

3 I. Schur, Über Potenzreihen, die im Innern des Einheitskrieses beschrankt sind, 
Journal für die reine und angewandte Mathematik, vol. 147 (1916), pp. 205-232, and 
vol. 148 (1917), pp. 122-145. 

4 I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mathe
matische Zeitschrift, vol. 28 (1928), pp. 171-199; p. 179. 
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property. Let h{/l + (l-h{)h{ z/l + (l-hj)hi z/1 + • • • be the con
tinued fraction for fi(z). Then we shall prove that 3C| hn —1/2| 
may diverge although /Ç | hn — 1 /21 converges, and that the convergence 
of the series ^2\hn —1/21 is wo/ necessary in order that the conclu
sion in Theorem 1.1 shall hold. For this purpose, let hn=l/2, 
(n = l, 2, 3 , . . - ) . Then ƒ(*) = l / [ l + ( l+* ) 1 / 2 ] , (/(O) = 1/2), and 
/1(^)==l/[ l + ( l + 2 ) 1 / 2 ] [ l + 2 ( l + 2 ) ^ ] , ( / 1 ( 0 ) = l/6).Thefunction/1(S) 
has the properties stated in Theorem 1.1 for the function ƒ(z) of that 
theorem, excepting that, as we shall see, the series 3C| fen ~ 1 / 2 | 
diverges. In fact, A£n = (4» + 3)/2(4» + l ) , A 5 n _ 1 = ( 4 « - 3 ) / 2 ( 4 « ~ l ) , 
(w = l, 2, 3, • • • ), in consequence of the following theorem: 

THEOREM 3.1. Let k be a parameter subject only to the conditions 

(3.1) k 9* (3 - 4»)/2, (1 - 4»)/2, n = 1, 2, 3, • • • , 

a t ó pw/ 

Ai»-i = (4» - 3)/2(4» - 3 + 2*), 
, (fc) 

(4» - 1 + 4&)/2(4rc - 1 + 2*), » = 1, 2, 3, 

rAew /Ae continued fraction fk(z) = Aj^/l + (1 - i i f c ) ) i i V H 
(1 — hf^h^z/l-^ • • • converges uniformly in a sufficiently small 
neighborhood of z = Q, and the analytic f unction f k(z) satisfies the relation 

1 hi — fk(z) 
(3.2) / H I W = 

^ 1 - *<»ƒ*(*) 

PROOF. The uniform convergence follows from the fact that all the 
partial numerators after the first are numerically less than or equal 
to 1/4 for z in a sufficiently small neighborhood of the origin. To prove 
(3.2), write the right-hand member in the form: 

1 / 1 n(k)\2 N 1 / 7 W *ik) >" • *(k) 

M (*) _ 1 - (Ai ) ) _ _1_ | <*) _ *i_ (*i ) ) 1 ( 7 (̂ ) Ai A2 «/(I + *i ) 

2 I 1 + 1 

(*K7(fc) ,„ 7(ftK7(fc) 

*<*> + 1//*(*)J 2 I 1 + 

(1 — A2 )^3 2 (1 — h%' )&V' z 

+ 1 + 1 + . . . } • 
We are to show that this is equal to fk+i(z). This can be done by show
ing that the odd part of the last continued fraction is identical with 
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the even part of the continued fraction for fk+i(z). We omit here the 
details of the calculation.5 

Let en(x)<r^fn(z), (n = 0, 1, 2, • • • ). Then we find for the en's the 
following recursion formulas: 

. 1 kn + (2 — kn)x + (3x — l)en(x) 
(3.3) en+i(x) = u , , ( ' ^ = e»(0), 

(n = 0, 1, 2, • • • ). For the special example under consideration, 
e(x)=e0(x) = 0 and ei(x) =2 / (3— x). Hence, although Af(e)<l in this 
case, nevertheless M(ei) = l. From the way in which (3.3) was ob
tained it follows that if e0(x) is an arbitrary function which is real 
when x is real, analytic for \x\ < 1 , and such that M(eo) ^ 1, then the 
functions ei(x)y ei(x), • • • are all of this same character. 
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5 O. Perron, Die Lehre von den Kettenbriichen, 2d edition, Leipzig and Berlin, 1929 
p. 201. 


