
A NOTE ON HILBERTS OPERATOR 

H. KOBER 

The transformation 

l c °° fit) l r *° dt 
(l)®f=-PV\ -± * = —lim ~{f(x + t)-f(x-t)} 

T J _oo / — X T e->0 J e t 

is well known to have the following properties : 

LEMMA L 1 When Kp< oo, then &fis a continuous (bounded) linear 
transformation with both domain and range Lp( — <*> , oo ), and § 2 / = — ƒ. 

LEMMA 2.2 Whenf(t)ÇzLi(— <*>, oo), then §ƒ exists for almost all x in 
( — oo , co ), but does not necessarily belong to Li(a, b), where a, b are arbi
trary numbers(— oo ^a<b^ oo) ; however (l+x2)~1\ &f\qÇzLi(— oo , co) 
when 0<q<l. When f and ^f belong to Li(— oo , oo), then § 2 / = —ƒ. 

The case p = 1 appears to present the greatest difficulties. In the 
present note I shall deal with the set of elements ƒ (/)£Li(— oo, oo) 
for which ^p/(E£i( — °° , °o ). In consequence of the lemmas, in this set 
or in Lp( — oo, oo) (1 <£<<*>), §>ƒ has no characteristic values other 
than ±i. We shall start from the sets of characteristic functions and, 
incidentally, from the class $£>p, the theory of which has been de
veloped by E. Hille and J. D. Tamarkin; !QP is the set of functions 
F(z) (z = x+iy) which, for y > 0, are regular and satisfy the inequality 

ƒ 00 

I F(x + iy) \pdx g Mp or | F{z) | ^ M 
- 0 0 

for 0<p< oo or p= oo, respectively, where M depends on F and p 
only.3 By $p we denote the corresponding class defined for y<0, and 
by F(t), G(i) the limit-functions3 (y—>0; x = t) of elements F(z)(~:$èP, 
G(s)G$p. By $p and ®p', respectively, we denote the two sets of 
those limit-functions, and by § p ' +®p the smallest linear manifold 

Received by the editors August 5, 1941. 
1 M. Riesz, Mathematische Zeitschrift, vol. 27 (1928), pp. 218-244. 
2 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, 1937, 

§5.14. E. Hille and J. D. Tamarkin, Fundamenta Mathematicae, vol. 25 (1935), pp. 
329-352. Comparing our notation with that of Hille-Tamarkin, we have § ƒ = — ƒ . 

3 Loc. cit., 1 ̂ p< oo. T. Kawata, Japanese Journal of Mathematics, vol. 13 (1936), 
pp, 421-430, 0<p< oo. The limit-functions exist for almost all £ in (— oo, oo) and be
long to Lp(— oo, oo). 
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containing both § / and $ p ' . Obviously an element f(t) belongs to 
&P + $p if and only if it can be represented in the form 

(3) ƒ(o = F(t) + G(t) = F(t) + Fi(fl, F G s ; , Fi G § ; , G G « ; , 

and this representation is unique, except for a constant when p— <*>. 
Theorem 1 (b), as yet unpublished, is due to H. R. Pitt, Aberdeen, 

to whom I am greatly indebted. 
We obtain the following results : 

LEMMA 3. Let 1 ^p S °° ; let the norm of an element <f>(z) belonging to 
&P or ®p be defined by 

U oo \ Up 

\<t>(t)\Ht\ or | 0(/) |p = ess.u.b. <j>(t) 
-00 / - 0 0 < * < 0 0 

for l^p<co or p=coy respectively. Then &p and $p are complete 
normed linear spaces, that is to say, (B) spaces in the terminology of 
Banach. 

THEOREM 1. Let / ( 0 G £ i ( — °°, °°). (a) A necessary condition that 
§ / G ^ i ( - °o, °°) is 

(5) f°°f(t)dt = 0. 

(b) (Pitt's theorem.) The condition is not sufficient. 

THEOREM 2. (a) A necessary and sufficient condition that both f and 
§ƒ belong to L\( — oo , oo ) is that f belongs to § / + $ i . (b) With domain 
§ i + ${ ,&fisa linear closed* unbounded transformation inL\(— cc, oo ). 

THEOREM 3. The set Q( + $ / is a non-closed subspace of L\ and is 
nowhere dense in L\. Its closure is the subset of L\ satisfying (5). 

We note that , by Lemma 1 and by the argument which will be em
ployed in the proof of Theorem 2(a), § p ' +$J —Lv for \<p< oo. 

We shall now give the proofs of the above results ; some examples 
will be given at the end of this paper. 

Proof of Lemma 3. We need only show that the space § p is com
plete. Let {Fn(z)} G ê p , n = l, 2, • • - , be a sequence satisfying the 
condition of convergence | Fn(t) — Fm(i) \ p—>0 (m>n—> oo ). Then there 
exists an element F(t) ÇzLp such that | F(t) — Fn(t) \ p—>0 as n—> oo ; we 
have to show that F(t) is the limit-function of an element <£>(£) G €V 

4 That is to s a y j „ e £ i + 3 ^ £« = £ƒ„(/* = 1,2, • • • ), | / - / „ | x->0 and U-g»|i-*0 
implyg = £/. 
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By a result due to Hille and Tamarkin,5 Fn(z) is represented by its 
"proper Poisson integral" 

/6) F (z)= — C yFn(t)dt = 1 f°° yFn{t + X) it 

Z = % -f iy ; y —* 0. 
Let 

(?) * « = - fc ^,;, ' : dt. 
IT J _ , 

y/ty + x) 

*2 + 3>2 

For y^ e>0 , by Holder's theorem, we have uniformly 

(8) | <p(z) - Fn{z) | ^ T-h-Vv | (*2 + I )" 1 |p , | F(0 - Fn(0 | p -> 0 

as w—*oo, where l / £ + l / £ ' = l. Hence <£>(s) is a regular function for 
3>>0, and it is obviously bounded when p = 00. 

Now let 1 Sp < °° • By a well known convexity theorem, 

J 001 1 ! f°° yàt r°° 1 1 

<p(̂  + iv) pd# ^ — I I \F(t + x) \pdx 

\F(x) \pdx. -s: Thus <p(z) G§p . By the same argument and by Fatou's theorem, 

I <p(t) - Fn(t) \p ̂  lim inf J ƒ I *>(*) - F»(«) | W 

^ | F ( / ) - F „ ( 0 | p - > 0 . 

By (8), the result holds for p = 00. Therefore F(t) = <p(t), which com
pletes the proof. 

To prove Theorem 2(a) we require a result which we deduce from 
theorems by Hille and Tamarkin : 

LEMMA 4. A necessary and sufficient condition that ƒ(/) belongs to 
Lv(— oo, oo) (l^p< oo) and that &f = if or § ƒ = — if is that f (t) be-
longs to &p or J?p' , respectively. 

L e t / ( 0 G $ p and f(t)=<p(t)+i\[/(t). Since ƒ(/) is the limit-function 
(3>—>0, x = /) of an element ^(0) £ § p , and since F(g) is represented by 
its proper Poisson integral, we have6 \p(x) = — &<p and, by Lemmas 1 

5 Loc. cit., Theorem 2.1 (ii), 1 ̂ p< 00. The result holds for p— 00. 
6 Hille and Tamarkin, loc. cit., Theorem 3.1. For p = 2, the lemma is an easy con

sequence of Theorem 95, Titchmarsh, loc. cit. 
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and 2, <p(x) = &\p; therefore § /=§(<p+^/0 = —\l/+i<p = if. Conversely, 
let f(t)(E:Lp and &f = if. For 3>>0, the function 

1 f00 f(i) 
1-KlJ _oo t •— Z 

is regular and representable by its proper Poisson integral, and 
its limit function is (1/2) {ƒ(*) -i$f} = ( l /2) ( / (*)+ƒ(*)) =/(x) . 6 

Hence F(z)E:$Qp, and so f(t)ÇzJQp , which proves the lemma. 

Proof of Theorem 2(a). Let ƒ G £i and § / £ L i , then the functions 

F = ( i /2 ) ( / - *$/), G = ( i /2 ) ( / + i$ / ) 

belong to L\\ by Lemma 2, § 2 / = —ƒ, and so tQF = iF, § G = — iG. By 
Lemma 4, we have / ? £ $ / , G 6 « / , and so / = F + G 6 $ i + $ / . 

Conversely, l e t / £ § ƒ + $ i • Then, by (3) with p = l, and by Lemma 
4, 

£ƒ = £ F + $G = t(^ - G) G L i ( - co, oo), 

which proves Theorem 2(a). Part (b) will be proved after Theorem 3. 
To prove Theorem 1, we need a further result due to Hille and 

Tamarkin.7 

LEMMA 5. Let l^p< °°, Let cj>(t) belong to Lp and possess a Fourier 
transform yp{x), 

4>(t)e-Uxdt, 1/p + 1/p' = 1. 
—N 

Then 0 ( / ) G § p or $p if and only if \p(x) vanishes in ( — co, 0) or in 
(0, oo ), respectively. 

For completeness we add the following result : 

LEMMA 5 ' . Let 2 <p < <x> and let </>(t) belong to Lv and have no Fourier 
transform in Lp>. Then 0(/) £ § p ' or $p if and only if there is a sequence 
{#n(0 } belonging to &p or $p' and satisfying the hypotheses of Lemma 5 
and such that | 0 (0 —(j>n(t) \ P->0 as n-^ oo .8 

7 Loc. cit., Lemma 4.2, and Annals of Mathematics, (2), vol. 34 (1933), pp. 606-
614, Theorem 3. 

8 The proof is similar to that given for the generalization of a theorem due to 
Paley-Wiener ; H. Kober, Quarterly Journal of Mathematics, vol. 11 (1940), pp. 66-
80, Theorem 2(b). Let 0 ( 0 E $ p and \<j>(t)-fn(t)\p->0, whereƒ„(*) ( » = l , 2, • • • ) has 
a Fourier transform in Lp

f; then the functions <t>,,.(t) = (l/2)(Jn—i&f,i) have the desired 
properties. The converse is proved by Lemma 3. 
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By Theorem 2 and Lemma 5, ƒ(/) can be represented as the sum of 
two functions F(t), G{t) belonging to L\ and such that their Fourier 
transforms <p(x), \[/(x) vanish for x<0 or x>0, respectively. By con
tinuity, they also vanish at x = 0 ; so does the Fourier transform of ƒ (t), 
which gives (5). For the Fourier transform of an element F(t)ÇzLi is 
continuous in (— oo, <x>). 

To prove Theorem 1(b), take f±(t) =t~l log"2 / and / 2 = 2/log 2 in 
(0, 1/2), / i ( 0 = / * ( 0 = 0 otherwise. Let f(t) =fx(t) -ƒ*(/), then obvi
ous ly /^ ) belongs to Li(— oo, oo) and satisfies (5). But §ƒ does not 
belong to L±(— oo, oo), since 

ƒ. § / i \dx = oo , 

J" 
•* - 1 /2 

$f21 dx 

-1 /2 

2 

7T log 2 J _l/2 
log 

1 

2# 

For, in (0, 1/2), we have 

©LA; - * ] = — f 

7T J 0 

7T */ o 

!/2 log-2tdt 

(x + /)* 
25 log"2 / dt 

1 f* 

- " J 
7T «/ o 

J # < 00. 

log-"2 / * 

(* + 0* 

2 ^ 2irx\ log x | 

hence §/i does not belong to L\{ —1/2, 0), which proves the theorem. 

Proof of Theorem 3. Let E be the subset of Li satisfying (5). By 
Theorems 1 and 2, § / + $ / is a subset of £ and different from E. I t 
is easy to see that E is closed in L\. We are left to show that E is the 
closure of §{ +2{. 

Let f(i) be a step-function belonging to E. Denoting by t(t) the 
step-function which is equal to 1 in (0, 1) and to zero otherwise, we 
can represent ƒ (/) by a finite sum^2ant(t/bn) (bn^0, an complex). By 
(5),]C#tt\bn\ = 0 , and so 

*$ƒ = 2-/ ^n ( log 1 ) sgn bn = 00~ 2 ) , 
V I x I / 

+ oo. 

Hence ^p/£Z,i, / £ § i + $ i . We can now approximate to any ƒ ( / ) £ £ 
by a sequence {/n(0 } (w = l, 2, • • • ) of step-functions belonging to 
§ i + $ i ' . Let ƒ(/) satisfy (5), and let {gn(0} D e a sequence of step-
functions such that [ƒ(/) —gn{t) 11—>0 as n—>oo . Take 

ƒ»(') = *»(*) - e(0 g„(Öd£, £ 1,2, 
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Then fn(t) is a step-function, fn{t) satisfies (5) ; therefore fnG§1 + $ / . 
Finally, by (5), we have 

= 2 | ƒ - gn|if 

which tends to zero as n—><*>. Thus E is the closure of § / + $ 1 . 
The set £ is nowhere dense in L\. For w h e n / G £ i , then, given e>0 , 

any element g(2) =f(t) + ôt(t) ( 0 < | ô | < e ) belongs to the sphere 
\g — f\ i < e, while g does not belong to E; when ƒ belongs to L\ but 
not to £ , then no element g of the sphere |g—/| i < \ffif)dt\ belongs 
to E. Thus we have proved the theorem. 

Proof of Theorem 2(b). In the domain § / + $ / , by Lemma 2, we 
have itQii&f) =ƒ; hence iQf is involutory. By Lemma 3, both §1 and 
Sti are closed spaces in L\. Therefore i&f, and therefore §ƒ, is closed ; 
for a linear involutory transformation in a (J3) space is closed if and 
only if the spaces of the characteristic functions are closed.9 By Theo
rem 3, §1 + $ 1 is not closed. Therefore §ƒ is not bounded in this 
domain ; for a linear closed transformation in a (B) space is continu
ous if and only if its domain is closed.10 Thus we have proved the 
theorem. 

The following are examples for the case /G-£i(—°°» °°)> &f 
G£i(— °°, °°). We may start from Lemma 4,11 but it is easier to 
make use of Theorem 2. 

(1) Let Ti(z) or T2(z) be polynomials of degree a>0 or /3>0 and 
such that they have no zeros for y ^ 0 or y < 0, respectively ; let a, b be 
any numbers such that — 00 < a < — 1/a, — <*><&< —1//3. Then, on a 
suitable Riemann surface, any branch of { Tx(z)} a (y > 0) or { T2(z)}b 

(y<0) belongs to §1 or $ti, respectively. When f(t)=[T1(t)\
a 

+ {T2(t)}
b, by Lemma 4, we have $f = i{ T1(x)}a-i{ T2(x) }b<ELi. 

(2) Let pi(z) = (1— cosaz)z-2,(p2(z) = {sinaz — 2sin(az/2) }z~2
1a>0} 

and let f(i)=A(pi(t)eiat+B<p2(t)e~iat\ then $f=iA<p1(x)ei™-iB<p2(x)-iax, 
and /G-^i , &fGLi. It can be shown that this result holds when 
Vi(z) 0 '= 1> 2) are integral functions such that <pj(t) G-^i and that, for 
any e > 0 , | <pj(z) j <K€ exp {(a+ e) \ z\ } ; in this way we can construct 

9 H. Kober, Proceedings of the London Mathematical Society, (2), vol. 44 (1938), 
pp. 453-465, Theorem 6'(a). 

10 S. Banach, Theorie des Opérations Linéaires, Warsaw, 1932, p. 41, Theorem 7. 
Probably the converse is well known. 

11 Or from Theorem 3.1, Hille and Tamarkin, lcc. cit. 

ƒ - * . -ej"{/(0 *.(Ö}# 

^ ƒ - * . ! + ƒ"{ƒ«)-g»(ö}df 
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all integral functions f(z) satisfying the conditions f if) £ L i , £>ƒ G£i , 
|ƒ(2)| <K/,e exp { ( 2 a + e ) | s | }. The proof is based upon a result due 
to Plancherel and Pólya.12 
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THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED 
FRACTIONS NEAR THE SINGULAR LINE 

H. S. WALL 

1. In t roduc t ion . W e consider here cont inued fractions of the form1 

go glZ (1 - gl)g2* (1 - g2)g32 
(1.1) ƒ(*) = 

1 + 1 + 1 + 1 + 

in which go^O, 0 ^ g n ^ 1, (w = l, 2, 3, • • • ), it being agreed that the 
continued fraction shall terminate in case some partial numerator 
vanishes identically. There exists a monotone non-decreasing function 
<fi(u), O ^ w ^ l , such that 

(1 .2 ) ƒ(*) 
Jo 1 

d(j>(u) 

+ zu 

and, conversely, every integral of this form is representable by such a 
continued fraction. Put M(/)=l.u.b. |«i<i | / ( * ) | . Then M ( / ) ^ l if and 
only if the continued fraction can be written in the form 

hi (1 - hi)h2z (1 - h2)hzz 
(1.3) f{z) = — 

1 + 1 + 1 +• • • , 
in which 0t>hn^ 1, (n — l, 2, 3, • • • ). These functions are analytic in 
the interior of the s-plane cut along the real axis from z = — 1 to 
z— _ 0 0 . 

The principal object of this paper is to prove the following theorem : 

THEOREM 1.1. If 0 < / ^ n < l , (w = l, 2, 3, • • • ), and hn-^\/2 in such 
a way that the series 1C | hn—1/21 converges, then the function f (z) given 

Presented to the Society, October 25, 1941; received by the editors August 14, 
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1 H. S. Wall, Continued fractions and totally monotone sequences, Transactions of 
this Society, vol. 48 (1940), pp. 165-184. 


