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1. Introduction. As one advances into the general theory of alge
braic varieties, one reluctantly but inevitably reaches the conclusion 
that there does not exist a general theory of birational correspond
ences. This may sound too reckless a statement or too harsh a criti
cism, especially if one thinks of the fundamental role which birational 
transformations are supposed to have in algebraic geometry. Never
theless our conclusion is in exact agreement with the facts and it is 
made with constructive rather than with critical intentions. I t is true 
that the geometers have a fairly good intuitive idea of what happens 
or what may happen to an algebraic variety when it undergoes a bi
rational transformation ; but the only thing they know with any cer
tainty is what happens in a thousand and one special cases. All these 
special cases—and they include all Cremona transformations—are es
sentially reducible to one special but very important case, namely, the 
case in which the varieties under consideration are nonsingular(that 
is, free from singular points). One can give many reasons for regarding 
as inadequate any theory which has been developed exclusively for 
nonsingular varieties. One rather obvious reason is that we have as 
yet no proof that every variety of dimension greater than 3 can be 
transformed birationally into a nonsingular variety.1 But there are 
other, less transient, reasons. Were such a proof available, it would 
still be advisable to develop the theory of algebraic varieties, as far 
as possible, without restricting oneself to nonsingular projective mod
els. This certainly would be the correct program of work from an 
arithmetic standpoint. I have a distinct impression that my friends 
the algebraists have not much use anyway for the resolution of the 
singularities. All they want is a general uniformization theorem, and 
now that they have it, they are content. 

The following consideration will perhaps carry greater weight with 
the geometers. It turns out, as I have found out at some cost to my
self, that we have to know a lot more about birational correspond
ences than we know at present before we can even attempt to carry 

An address delivered before the meeting of the Society in Bethlehem, Pa., on 
December 31, 1941, by invitation of the Program Committee; received by the editors 
January 22, 1942. 

1 The resolution of the singularities of three-dimensional varieties will be carried 
out in a forthcoming paper of mine. 
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out the resolution of the singularities of higher varieties. A general 
theory of birational correspondences is a necessary prerequisite for 
such an attempt. I shall have occasion later on to indicate some diffi
cult questions concerning birational correspondences which arise in 
connection with the resolution of singularities. 

2. Birational correspondences and valuations. From a formal point 
of view, there is nothing mysterious about a birational transforma
tion. If V— Vr is an irreducible /'-dimensional algebraic variety in an 
n-dimensional projective space, the coordinates £1, £2, • • • , £n of its 
general point are algebraic functions of r independent variables, and 
the field 2=-ST(£i, £2, • • • , £n) generated by these functions is the 
field of rational f unctions on V. Here K denotes the field of constants (in 
the classical case K is the field of complex numbers). If V' = Vfm is an
other irreducible algebraic variety, with general point (£/ , £2', • * *, £m ) 
and associated field 2 ' —K (£ƒ , £2 , • • • , £J ), then the two varieties V 
and V' are birationally equivalent if the two fields 2 and 2 ' are simply 
isomorphic: 'S/K—H'/K. A birational transformation is merely the 
process of passing from one variety to another, birationally equiva
lent, variety. 

The difficulties begin when we wish to associate with this purely 
formal process a geometric transformation, that is, a correspondence 
between the points of the two varieties. From the equations of the 
transformation, in which the £"s are given as rational functions of 
the £'s and vice versa, it is not difficult to conclude that the trans
formation sets up a (1, 1) correspondence between the non-special 
points of V and the non-special points of V'. The points of either 
variety for which the equations of the transformation fail to define 
corresponding points on the other variety are referred to as special 
points in the sense that they lie on certain algebraic subvarieties, of 
dimension less than r. In the classical case, considerations of continu
ity allow us to complete the definition of the correspondence also for 
these special points. In the abstract case we use valuation theory in
stead, as follows: 

A valuation of the field 2 is an homomorphic mapping v of the mul
tiplicative group 2 — 0 (that is, the element zero excluded) upon an 
ordered additive abelian group T, which satisfies the well known valua
tion axioms: (1) z;(coi-to2) =z>(a>i)+z>(<o2) î (2) ^(^i±^2) ^ m i n {fl(wi), 
v(œ2)} ; (3) v(œ)9*0, for some co in 2 ; (4) v(c) =0 , for all constants c5^0. 
We put v(0) = + 00. 

In the case of algebraic functions of one variable, every valuation 
arises from a branch of our curve V. The value v(œ) is then the order 
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of co at the branch and is an integer. Positive and negative v(œ) signify, 
respectively, that the center of the branch is a zero or a pole of the 
function co, while if v(o)) = 0 then the function-theoretic value of co at 
the center of the branch is a finite constant, different from zero. In 
this special case, it is clear that from an algebraic standpoint the func
tion-theoretic values of the elements of the field are the cosets of the 
valuation ringed {CO@8<-H/(CO) ^ 0 } , with respect to its subset consist
ing of the elements co such that v(œ) > 0 . This subset is a prime divisor-
less ideal p, and so the cosets form indeed a field; the field of complex 
numbers, in the classical case. This consideration is independent of 
the dimension of the field and can therefore be applied directly to the 
general case. It is therefore always possible to associate with any valu
ation v of 2 a mapping ƒ of the elements of S upon the elements of 
another field (and the symbol oo), the field of residual classes of 
S3 mod p, and we may speak of /(co), co£2 , as being the function-
theoretic value of co (if v(œ) <0 , then /(co) = oo). This field is the so-
called residue field of the valuation. However, if r>\ then the residue 
field may be a transcendental extension of the ground field K. Its de
gree of transcendence s over K, or briefly, its dimension, is at most 
r — 1, and is referred to as the dimension of the valuation. A zero-
dimensional valuation is called a place of the field 2 . The function-
theoretic values of the elements of S at a given place are constants, 
that is, either elements of K or algebraic quantities over K. 

Given a valuation v and a projective model V of S, with general 
point (§i, £2, • • • , £n), it is permissible to assume that the function-
theoretic values of the £ 's are different from 00, since we may subject 
the coordinates £»• to an arbitrary projective transformation. Then the 
polynomials in the £'s which have function-theoretic value zero form 
a prime ideal in the ring of all polynomials in the £'s. This prime ideal 
defines an irreducible algebraic subvariety W of V. This subvariety W 
we call the center of the valuation v on the variety V. The dimension 
of W cannot exceed the dimension of the* valuation. In particular, 
the center of a place is always a point of V. 

The following geometric picture of a valuation is suggestive, al
though not entirely adequate. A zero-dimensional valuation, that is, 
a place, with center at a point P , corresponds to a way of approaching 
P along some one-dimensional branch, which may be algebraic, ana
lytic, or transcendental. Similarly an s-dimensional valuation with 
an 5-dimensional center W corresponds to a way of approaching W 
along an (s + l)-dimensional branch through W. 

After these preliminaries, we define the birational correspondence 
between two birationally equivalent varieties V and V' as follows: 
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DEFINITION 1. Two subvarieties W and W' of V and V'', respectively, 
correspond to each other if there exists a valuation of the field 2 whose 
center on V is W and whose center on V' is W. 

Note that our definition does not treat points in any privileged 
fashion. Any subvariety of F is treated as an element, rather than as 
a set of points. This procedure is much more convenient than the 
usual one in which corresponding loci are defined as loci of corre
sponding points. 

In the study of the birational correspondence between F and V', it 
is found convenient to introduce a third variety V which is bira-
tionally related to both F and F ' , the so-called join of V and V' 
(or the variety of pairs of corresponding points of F and V). V is 
defined as follows. We adjoin to S a new transcendental rjQ and we 
regard the n-\-\ quantities 770, ?7i = ?7o£i> • • • , Vn^Vo^n as the homo
geneous coordinates of the general point of F. Similarly, the ra + 1 
quantities r)i =770, Vi =?7o£i , * • * , Vm = ?7o£^will be the homogeneous 
coordinates of the general point of F ' . The (n + l)(m + l) quantities 
(^ij = ViVj can be regarded as the homogeneous coordinates of the gen
eral point of a variety birationally equivalent to F and to V'. This 
variety is our F, the join of F and V'. The birational correspondence 
between F and F has the property that to any subvariety of V there 
corresponds a unique subvariety of F; in particular, to every point 
of F there corresponds a unique point of F. Similarly, for F and V'. 
Thus, both F and V' are single-valued transforms of F. The proper
ties of the birational correspondence between F and V' can be readily 
derived from the properties of the birational correspondences between 
F and F and between F and V'. We therefore replace one of the two 
varieties F, F ' , say V', by the join F, that is, from now on we shall 
always assume that V is a single-valued transform of V'. 

3. Fundamental loci; geometric preliminaries. On the basis of Defi
nition 1, it is easy to prove that the points of F to which there corre
spond more than one point on V' constitute an algebraic subvariety 
F of F, and that every subvariety IF of F to which there correspond 
more than one subvariety W on V' must lie on F. This variety F is 
called the fundamental locus of the birational correspondence, and 
every W which lies on Fis a fundamental variety. This is not our final 
definition, but it will do for the moment. Note that the fundamental 
locus on V' is an empty set, in view of our assumption that F is a 
single-valued transform of V'. 

What corresponds on V' to a fundamental variety W of F? To 
this question we have a complete answer in the case of a nonsingular 
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V. We have, namely, in this case the following two fundamental 
theorems (see van der Waerden, Algebraïsche Korrespondenzen und 
rationale Âbbildungen, Mathematische Annalen, vol. 110 (1934)): 

A. If W is an irreducible s-dimensional fundamental variety of V, 
then the transform of W is an algebraic subvariety of V' whose irreducible 
components are all of dimension greater than s. 

B. The transform of the fundamental locus F is a pure (r — 1)-dimen
sional subvariety of V'. 

The following examples show that both theorems fail to hold for 
singular models. 

(1) If P is a point of V at which V is locally reducible, that is, if in 
the neighborhood of P the variety V consists of v iy>\) analytical 
r-dimensional branches, then in special cases it turns out that V is 
the projection of another variety V' on which these v branches be
come separated.2 Then the point P will be the projection of v distinct 
points of V', and this contradicts Theorem A. 

(2) Let Q be a ruled quadric surface in S3 and let V be the three-
dimensional cone which projects Q from a point O not in S3. We take 
another copy of Q, say Q'', which we now imagine as being immersed 
in an S&. Let I be a line in 56 which does not meet the 5 3 containing 
the quadric. We set up a (1, 1) projective correspondence between 
the points P' of I and the lines p of one ruling of the quadric. Let V' 
be the irreducible three-dimensional variety generated by the planes 
(P', p), where P' and p are corresponding elements in the above pro-
jectivity. I t is easy to set up a birational correspondence between V 
and V' in which to the planes (O, p) there correspond the planes 
(P ' , p). There will be no fundamental points on V', while O will be 
the only fundamental point on V. To the point O there corresponds 
on V' the line /, in contradiction with Theorem B. 

One has the feeling that the second example does more damage 
than the first, because the first counterexample could be explained 
away on the basis that the point P , as origin of v analytical branches, 
should not be regarded at all as a "point" of the variety, but rather 
as a point of the ambient projective space at which v "points" of the 
variety accidentally happened to come together. This explanation, if 
stripped of all metaphysics, can have only one mathematical mean
ing, namely, it means, by implication, that in the general theory of 
birational correspondence, we should restrict ourselves to varieties 

2 Whether this is true generally, is not at all obvious and, in fact, has never been 
proved. 
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which are locally irreducible at each point. What interests us in this 
argument is the formal admission that some kind of restriction as to 
the type of varieties to be studied is necessary in the theory of bira-
tional correspondences. Whether or not the restriction to locally irre
ducible varieties is the right one, is a debatable matter. For one 
thing, it is not certain that in making such a restriction we are not 
being too stingy, unless we can prove that the branches of a variety 
can always be separated by the method of projection. This is probably 
true and should not be too difficult to prove. Actually we regard this 
restriction as being too generous. For, besides the requirement that 
the varieties V of our hypothetical restricted class satisfy Theorem A, 
we find it essential that these varieties also satisfy the following addi
tional condition : 

C. If to a point P of V there corresponds a unique point P' of V', 
then the birational correspondence, regarded as an analytical transforma
tion, is regular at P. 

The geometric meaning of this condition can be roughly indicated 
as follows. If this condition and condition A are satisfied for a given 
variety V, then the analytical structure of the neighborhood of any 
point P of F cannot be affected by a birational transformation, unless 
this transformation blows up P into a curve, or a surface and so on 
(always provided we replace the transform V of V by the join V\ 
compare with §2). In particular, it is not possible to simplify any 
further the type of singularity which V possesses at P without doing 
a thing as radical as that of spreading out that singular point into a 
variety of dimension greater than 0. From this point of view, condi
tion C can be looked upon as a sort of maximality condition. 

In the case of algebraic curves it follows readily from this geometric 
interpretation that the only curves which satisfy conditions A and C 
are the nonsingular curves. But already in the case of surfaces we get 
a much wider variety of types. For instance, it can be proved that the 
surfaces in 63 which satisfy our conditions are the surfaces which have 
only isolated singularities. 

We now proceed to define arithmetically the varieties of our re
stricted class. We call these varieties locally normal. Included among 
these varieties are those which I have called normal varieties. The 
algebraic operation which plays a fundamental role in our arithmetic 
approach to the geometric questions just outlined is that of the in
tegral closure of a ring in its quotient field. Theorem C follows in a 
relatively simple fashion from our arithmetic definitions and from 
some well known theorems in valuation theory. Theorem A lies much 
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deeper and its proof is more difficult. As to Theorem B, it definitely 
must be sacrificed when we are dealing with singular varieties. 

4. Locally normal and normal varieties. We use the homogeneous 
coordinates 7]0, yi, - - - , rjn of the general point of V (§2) and we define 
the quotient ring Q(P) of any point P of F as the ring of all quotients 
f(rj)/g(rj), where ƒ and g are forms of like degree in 770, ?7i, * • • , Vn and 
where g^O at P . In other words, the quotient ring Q(P) consists of all 
functions in our field 2 which have a definite and finite value at P . 
In a similar fashion, we define the quotient ring Q(W) of any irreduc
ible algebraic subvariety W of F by the condition that g(rj) F^O on W 
(that is, that g should not vanish at every point of W). 

One is led to the consideration of quotient rings when one examines 
the equations of a birational correspondence between F and another 
variety V''. For it is seen immediately that if the nonhomogeneous 
coordinates £ ƒ , • • • , £m of the general point of Vf belong to the quo
tient ring Q(W) of a given IF on F, then to IF there corresponds a 
unique subvariety IF' on V' and moreover Q{W') will be a subring 
of Q(W). If Q(W')=Q(W), then also IF will be the only subvariety 
of F which corresponds to IF'. In this case we say that the birational 
correspondence is regular at W, or along W. In particular, if the bira
tional correspondence is regular at a point P of F, then as an analyti
cal transformation it is regular in the neighborhood of P . Therefore, 
the quotient ring of a point determines uniquely the analytical struc
ture of the neighborhood of the point. In the sequel we shall say that 
a birational correspondence is regular on F if it is regular at each 
point of F. 

DEFINITION 2. A variety V is locally normal along a subvariety IF, 
if the quotient ring Q(W) is integrally closed in its quotient field (that 
is y in 2 ) . 

DEFINITION 3. Vis locally normal, if it is locally normal at each point. 

The last definition refers only to points. The reason for this is the 
following: If F is locally normal at one point P of a subvariety IF 
of F, then it is also locally normal along IF. Hence if F is locally nor
mal, in the sense of Definition 3, it is also locally normal along any IF. 

I t is not difficult to show that F is locally normal if and only if the 
following condition is satisfied: If S is the conductor of the ring 
K[rio, 071, • • • , r)n] with respect to the integral closure of this ring in its 
quotient field, then the subvariety of V determined by the (homogeneous) 
ideal S is empty. This implies that either S has no zeros at all, or 
its only zero is the trivial one: (0, 0, • • • , 0). Therefore, Ê is either 
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the unit ideal or is a primary ideal belonging to the irrelevant prime 
i d e a l (770, Vh • • • , Vn). 

If 6 is the unit ideal, we say that V is normal, that is, we give the 
following definition : 

DEFINITION 4. A variety V is normal if the ring JST [770, rji, • • • , rjn] 
is integrally closed in its quotient field. 

It can be proved that the singular manifold of a locally normal 
r-dimensional variety is of dimension less than or equal to r — 2 (in 
particular, a locally normal curve is nonsingular). The converse is not 
generally true, except in the case r = l, since a nonsingular curve is 
always locally normal. However, the converse is true f or hyper surf aces, 
that is, for F / s in an Sr+i, Thus any surface in Sz is locally normal if 
and only if it has a finite number of singularities. 

It is important to point out that nonsingular varieties are always 
locally normal. 

Our definitions clearly indicate that normal varieties can differ from 
locally normal varieties only by some property at large, since locally 
they cannot be distinguished from each other. This difference at large 
is put into evidence by the following characterization of normal varie
ties, due to Muhly : A variety V is normal if and only if the hyper sur
faces of its ambient space, of any given order m, cut out on V a complete 
linear system. Now it can be proved that locally normal varieties are 
characterized by the completeness of the above linear systems for 
sufficiently high values of m. This last result, in conjunction with the 
fact that every nonsingular V is locally normal, contains as a special 
case of the well known lemma of Castelnuovo concerning nonsingular 
curves. This lemma plays an important role in Seven's proof of Rie-
mann-Roch's theorem for surfaces. 

We have already pointed out that for locally normal varieties Theo
rems A and C hold true. Moreover it can be shown that these are the 
only varieties for which these theorems are true. It may be added that 
there is really no great loss of generality in confining the theory of 
birational correspondences to locally normal varieties. For it can be 
shown that any variety V determines uniquely, to within regular bi
rational transformations, a locally normal variety V' which is bira-
tionally equivalent to V and which is such that : (a) to each point P' 
of V there corresponds a unique point P of V, and we have always : 
Q(P')^2Q(P) Î (b) to any point P of F there corresponds a finite num
ber of points on V' ; (c) if V is locally normal at P, then the birational 
correspondence between V and V' is regular at P. I t is not difficult to 
show that these properties of the birational correspondence between 
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V and V' imply that, to within a regular birational transformation, 
V is the projection of V' from a center Sk which does not meet V'. 

It would be of interest to characterize the locally normal varieties 
for which Theorem B holds. I t can be proved that the following con
dition is sufficient for the validity of Theorem B : If P is any point 
of F and if IF is any (r— 1)-dimensional subvariety through P , then a 
sufficiently high multiple of W should be locally (that is, at P) com
plete intersection of V with an hypersurface of the ambient space. 
In terms of ideal theory, this means that in the quotient ring of P a 
sufficiently high power of any minimal prime ideal should be quasi-
gleich (in the sense of van der Waerden) to a principal ideal. This 
condition gives us a good insight into the "real" reason of the validity 
of Theorem B for nonsingular varieties; for we know that if P is a 
simple point, then every minimal prime ideal in Q(P) is itself a prin
cipal ideal. 

5. Monoidal transformations. I should now like to discuss briefly 
a special class of birational correspondences which seem to be very 
useful in the theory of singularities, whether we deal with the resolu
tion of singularities or with the analysis of the composition of a singu
larity from the standpoint of infinitely near points. These special 
transformations are the hyperspace analogue of plane quadratic 
transformations, and they are therefore of importance also for the 
general theory of birational correspondences. 

When we are dealing with locally normal varieties V, we find it 
most convenient to define fundamental varieties of a birational cor
respondence between V and another variety V', as follows: 

DEFINITION 5. An irreducible subvariety W of V is fundamental if a 
corresponding subvariety W' of V' exists such that Q(W)^Q(Wf). 

We know from §4 that if Q{W)~DQ{W,)1 then W' is the only sub-
variety which corresponds to W. Hence if IF is fundamental, then the 
relation Q(W)J)Q(W') is true for any W which corresponds to IF. 
If the birational correspondence has no fundamental points on F and 
on F ' , then Q(W) = Q(W), for any two corresponding sub varieties IF 
and W'j and the transformation is regular on F (and on Vf). We do 
not regard two birational transformations as being essentially distinct 
if they differ only by a regular birational transformation. 

We consider a birational correspondence between two locally nor
mal varieties F and V', and we again restrict ourselves to the case 
in which the given correspondence has no fundamental points on V'. 
Then V' is in regular birational correspondence with the join F of V' 
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and F, and we may replace V' by V. Consequently, we assume that 
the equations of the birational correspondence between F and V' are 
of the form : 

Ma = y&t, i = 0, 1, • • • , n\j = 0, 1, • • • , rn, 

where 770, rji, • • - , rjn are the homogeneous coordinates of the general 
point of F and where the 0y are forms of like degree in the rj's. Here p 
is a factor of proportionality and the rjij are the homogeneous coordi
nates of the general point of V'. I t can be shown that the fundamental 
locus on F is given by the base manifold of the linear system 
Ao0o + • * ' +Xm0m = O, provided we first drop all fixed (r — ̂ -dimen
sional components of the system. In terms of ideal theory, it means 
that we first write each principal ideal (0y) as a power product of 
minimal primes, say (0y) = W8jy where 21 is the highest common di
visor of (0O), • • • , (0m). Then the fundamental locus is given by the 
ideal (S80, 33i, • • • , 33m). This ideal is of dimension less than or equal 
tor-2. 

The special transformations which we wish to discuss are those for 
which (0o, 0i, • • • , 0m) is itself a prime ideal, of dimension s^r — 2 
or differs from a prime ideal by an irrelevant primary component. 
For the lack of a better name, we call them monoidal transforma
tions.z The irreducible subvariety IF of F defined by the ideal 
(0o, 0i, • • • , 0m) is called the center of the transformation. I t is not 
difficult to see that a change of the base of the ideal (0o, • • • , 0m) 
does not essentially affect the transformation. A quadratic transforma
tion is a special case of a monoidal transformation, the center is in 
that case a point. 

The effect of a monoidal transformation consists in that the center 
IF is spread out into an (r — 1)-dimensional irreducible subvariety W' 
of V'. Moreover, points of W which are simple both for V and IF, corre
spond to simple points of W''. This is the main reason why a monoidal 
transformation is a useful tool in the resolution of singularities, since 
while it may conceivably simplify some singular points which lie on 
its center, it does not introduce new singularities.4 

There are two outstanding problems concerning monoidal trans-

3 With some non-essential modifications, and without their projective trimmings, 
the space Cremona transformations, known as monoidal transformations, are monoidal 
transformations in our sense. 

4 There is one exception : to a simple point of V which is singular for W there may-
correspond singular points of V\ For this reason it is usually advisable to "smooth 
out" W, that is, to resolve the singularities of W, before one applies the monoidal trans
formation. 



412 OSCAR ZARISKI [June 

formations which play a role in the problem of resolution of singu
larities, but which at the same time are decisively of interest in 
themselves. We proceed to outline these questions. 

PROBLEM 1. Given any birational correspondence between two non-
singular models V and V', and assuming that there are no fundamental 
points on V', show that the birational transformation can be decomposed 
into monoidal transformations. 

In other words, the question is to show that for nonsingular models 
the monoidal transformations form a set of generators of the bira
tional group. It is very likely that this decomposition exists also when 
only V' is nonsingular. 

PROBLEM 2. Given any birational correspondence between two arbi
trary {not necessarily nonsingular) models V and V'', and assuming as 
before that there are no fundamental points on V', show that the funda
mental varieties on V can be eliminated by monoidal transformations. 

By this I mean that it is asked to transform F by a sequence of 
monoidal transformations into another variety F* such that the bi
rational correspondence between F* and V' has no fundamental 
points on F*. 

As to Problem 1, we have a proof in the case of surfaces. In this 
case, the result can be regarded as a generalization of the well known 
theorem of Noether on the decomposition of plane Cremona trans
formations into quadratic transformations, although Noether's theo
rem is not a special case of this general result. I t may be well to 
clarify the connection between the two results. In the first place, a 
quadratic Cremona transformation is not at all a quadratic trans
formation in our sense. Our quadratic transformation has only one 
ordinary fundamental point, and its inverse has no fundamental points 
at all, while a plane quadratic transformation and its inverse both 
have three fundamental points, which in special cases may be infi
nitely near points. For this reason a plane Cremona transformation 
can never be a quadratic transformation in our sense. The transform 
of a plane IT under a quadratic transformation in our sense is not a 
plane, but a certain rational surface M in 55, or any other surface in 
regular birational correspondence with M. Of course, an ordinary 
quadratic transformation between two planes T and 7r' can be ex
pressed as a product of quadratic transformations in our sense, or 
more precisely as the product of 3 successive quadratic transforma
tions and of 3 inverses of quadratic transformations. Since our proof 
takes care of surfaces over abstract fields K, it yields immediately a 
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corresponding result for the fundamental varieties W of dimension 
r — 2 in the general case, for the adjunction of certain r — 2 transcen-
dentals to the ground field will make a surface out of the variety V 
and a point out of W. In particular, the decomposition into monoidal 
transformations is thus established for birational correspondences be
tween nonsingular three-dimensional varieties, provided the corre-
pondence has only fundamental curves, but no isolated fundamental 
points. 

In applications of Problem 2, the main interest lies in the elimina
tion of the simple fundamental varieties of V. In this case we have a 
complete proof, provided the resolution theorem is granted for varie
ties of dimension two less than the dimension of V. Thus, in the case 
of three-dimensional varieties we have to use only a thing as little 
as that of the resolution of singularities of an algebraic curve. I t is 
clear that Problem 2 is to be viewed as a step in an inductive proof 
of the general theorem of the resolution of singularities rather than 
as a problem for the solution of which we first need that general theo
rem. The really important problem is Problem 1. Its solution seems 
to be essential for the resolution of singularities of higher varieties. 
Thus, it is possible to carry out the resolution of singularities of three-
dimensional varieties, because we have the theorem of local uniform-
ization for the varieties of this dimension, plus the solution of 
Problem 1 for surfaces over abstract fields of constants. 
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