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size of the éliminants but the size of their largest prime factor which 
is important, and secondly it is not essential to take the w's in order 
of magnitude. In answer, it should be pointed out that after one 
passes the limits of factor tables, it becomes impracticable to deal 
with the factors of the éliminant rather than the éliminant. There
fore, since the éliminant (in one case at least) appears to be an in
creasing function of m, one is compelled to work with monotone 
increasing m. 
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1. Introduction. A Banach space is said to be uniformly convex if 
to every e, 0 < e < 1, there is a 5(e), 0 < 5(e) < 2 , such that \\x\\ = ||y|| = 1 
and H^—yll^e imply ||x+3>|| < 2 —ô(e). J. A. Clarkson, who intro
duced the concept of uniform convexity [5], proved that the spaces 
Lp and lv are uniformly convex if p > 1, basing his proof on the follow
ing inequalities2 among norms of elements of Lp or lp: 

(1.1) ||* + y\\*> + \\x - y\p S 2p~K\\x\\p + \\y\\p), ^ 2 ; 

(1.2) IJ* + y\\p + ||* - y\\p è 2(||*||^ + \\y\\p')^, ^ 2 ; 

(i.3) ||* + y||p' + Ik - y\\p' £ 2(\\4P + l|y||p)p'-1, i < p ^ 2. 

The uniform convexity of Lp and lp follows by inspection from either 
(1.1) or (1.2) if p^2, and from (1.3) if Kp£2. As Clarkson ob
served, (1.1) is a consequence of (1.2), since {(l/2)(ar+br)}1/r is an 
increasing function of r for positive a and b [6, p. 26], so that the 
right side of (1.1) is not less than that of (1.2). However, (1.1) is 
interesting because it is considerably simpler to prove than (1.2) (see 
§3), so that the uniform convexity of Lp and lp can be established 
more easily for p ^ 2 than for 1 < p < 2. 

In this note I give a short proof of Clarkson's inequalities (and of a 
general set of inequalities, which includes them), using M. Riesz's 
convexity theorem for linear forms. This proof has the advantage 
that it can be generalized to show that the spaces Lp{Lq}, Lp{lq}, 
lp{Lq},lp{lq} are all uniformly convex3 if p>l,q>l. Here ! > { £ } is 

1 National Research Fellow. 
2 Here, as throughout this note, p' = p/(p — 1) ; similarly for other letters. 
8 These results suggest the possibility tha t L*{E} and IP{E} are uniformly con

vex whenever E is; but I can offer no evidence for or against this conjecture. 
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the Banach space of functions x{t) from a real interval to the Banach 
space E, integrable (in the sense of Bochner [3]), and such that 
9Kp[^] = ( / l k ( 0 l | p * ) 1 / p is finite; the norm of x in L*{E} is4 Wlp[x]. 
Similarly, lp{E\ is the Banach space of sequences X= {xn} of ele
ments of £ , such that WlP[X] = CCIWI*01/p is finite, with Wlp[X] as 
the norm of X. 

I also give a separate proof of (1.1); this proof is strictly elemen
tary, depending only on the inequalities of Holder, Minkowski, and 
Jensen. 

Clarkson's inequalities can be written in the general form 

(1.4) (||* + y| | ' + | |* - yH')" ' S 2^'(\\x\\' + |M|*)1/s; 

(1.4) reduces to (1.1), (1.2), (1.3) for r = s = p; r = p, s=p'; r = p', 
s = p. In each case, s^p^r; this condition will be used in §2. 

2. A preliminary reduction. We begin by showing tha t (1.4), for 
an r and an s with Ks^p^r, is implied by the same inequality for 
complex x and y (with norms replaced by absolute values). In fact, 
if we know 

(2.1) ( | x+ y\r + \ x - y\ryr ^ 2 1 ' s ' ( | x\* + \ y I8)1'* 

for all complex x and y> with K ^ ^ r , we deduce (1.4) (for Z>) 
from the inequalities [6, p. 148] 

{( ƒ I *(0 + yd) \pdtJ P + ( ƒ | x(t) - y(t) \'dt\ \ 
(2.2) 

^ | ƒ ( i <t) + y(t) |' + | *(/) - y(t) l^/ '^i \ 

21/8'{ ƒ ( I *(') Is +1 y (0I 'V^} 
(2.3) 

^21/8'{(J \*V)\pàt) + ( J \y(f)\'dtj I , s g p. 

For, (2.1) shows that the left side of (2.3) is not less than the right 
side of (2.2). For lv, we have the same inequalities with ƒ replaced 
b y Z [6. P. 123], and we draw the same conclusions. 

3. Independent proof of (1.1). According to §2, it is enough to 
prove 

(3.1) ( | x+ y\p + \ x - y\pyip ^ 21>*'(| x\p + \ y\p)1/p, p^2. 

r^p; 

UP 

4 See Bochner and Taylor [4] for a discussion of these spaces. 
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We have, using first Jensen's inequality [6, p. 28] and then Holder's 
inequality with index p/2 [ó, p. 24], 

( | * + 3 > | p + | x - y I*)1/* £ (\x+ y\2 + \ x - y I2)1'2 

= 2X/2(| x\2 + \ y\2yi2 

^ 2 1 / 2 { 2 ^ - 2 ) / ^ ( | X\P + \ y\py/p}w 

= 21 /*>'( |* |P + I y\p)1,p, 

since (p/2)'=p/(p-2). 
This is the simplest proof of the uniform convexity of Lp and lp, 

(P>2). 

4. Proof of Clarkson's inequalities. We shall prove the following 
general theorem, of which Clarkson's inequalities are special cases: 
it asserts the truth of (1.2) and (1.3), respectively, when p^2, r = p, 
s = p', and when 1 < £ ^ 2 , r = p', s=p. 

THEOREM 1. If x and y are elements of Lp or lp, (p>l), then 

(4.1) (||tf + y\\r + | |s - ;y||01/r S 21 ' ' ,(|MI* + |M|8)1 / s 

whenever the point (r, s) is in the common part of the regions of the (r, s) 
plane determined by the inequalities 

(4.2) r^s^r', r^p^s>l. 

As we saw in §2, it is enough (since the second inequality (4.2) is 
satisfied) to establish 

(4.3) ( | x+ y\r + \ x - y | ' ) 1 / r ^ 2 1 ' s ' ( | x\' + \ y\8)lls 

for all complex x and y. We now appeal to M. Riesz's convexity theo
rem,5 which, stated for the pair of linear forms x+y and x—y, is that 

(I * + 3>l1/a + | * - y \ l , a Y 
Ma,b = log m a x : : r—-. 

* (\x\"b + \y\^y 
is convex in the triangle6 Q^a^b^l. 

Now, we have the identity 

(\x+ y\2 + \ x - y\2)112 = 2 1 ' 2 ( | x\2 + \ y\2)112, 

and the trivial inequalities 
5 [6, p. 219]; a new and interesting proof (and generalization) has been given by 

Thorin [8], 
6 The maximum is taken over all x and y. When a or b is zero, the numerator or 

denominator on the right is to be replaced by its limiting value as a or & approaches 
zero, namely max (|x-\-y|, \x—y\) or max {\x\, \y\). 
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max ( | » + y |, | * — y | ) ^ I * I + I y I > 
max ( | a; + y | , \ % — y | ) ^ 2 max ( | x | , | y | ) ; 

i t follows easily that 

(4.4) ikTi/2,1/2 = (1/2) log 2, Afo.i = 0, M0,o = log 2. 

The graph of a continuous convex function lies below any chord. 
Since the linear function of a and b taking the values log 2, 0, 
(1/2) log 2 at the points (0, 0), (0, 1), and (1/2, 1/2) is ( 1 - 6 ) log 2, 
we obtain from (4.4) (writing a = l/V, b = l/s), the inequality (4.3), 
valid for any r and s such that (1/r, l/s) is in the triangle whose 
vertices are (0, 0), (0, 1), and (1/2, 1/2). These values of r and s are 
those satisfying r > l and the first inequality (4.2). 

The uniform convexity of Lp and lv is a consequence of any case 
of Theorem 1 ; Clarkson's inequalities (1.2) and (1.3) are the strongest 
cases involving p in a simple way.7 When r = s = p^2> we have the 
weakest inequality ; we should therefore expect to be able to give the 
simplest proof in this case. 

5. The uniform convexity of XP{X3}. It is convenient to have a 
shorthand notation for our Lp and lv spaces. We shall use X to stand 
for either L or /; a statement involving X is to be interpreted as the set 
of statements obtained by the reading of L or / for X in all possible 
ways. 

The space \p {E} is evidently uniformly convex if its elements sat
isfy any inequality of the form 

(5.1) {Wl'Ax + y} + mr
p[x - y]}llr g 21"'WW+m'Ay]}1" 

with r>l, s>l. 
The content of (5.1) will perhaps be clearer if we write it out ex

plicitly for one of its cases. For Lp{lq}, it states that for any se
quences {#n00}, {yn(0} of functions belonging to LP , 

{[ ƒ ( E K(0 + ynit) | «)*/«<»J" 
r /» -\r/p\ 1/r 

+ [ J (£!*.(')-y.(0l«)p/,,<ft] | 

s 21/8'|[ J Œ I x»{t) |«)"«*J + L J (ZI y-(0 Vyi'dt^ J , 
7 The left side of (2.1) is an increasing function of 1/r; the right side is a decreasing 

function of l / s . Hence we get a better inequality by increasing 1/r or l/s. 
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provided that the right side is finite. For lp{Lq}, (5.1) is the same 
inequality with ƒ and ^ interchanged. 

Even when E is X«, (5.1) is not true (naturally enough) for all 
choices of r and s. Reasonable generalizations of Clarkson's inequali
ties are the cases of (5.1) described by the following table, when E 
isX9. 

2 

1<2^2 
1<2^2 
1<2^2 

2^2 
2^2 
2^2 

P 

i^Pèq' 
Kp^q 

P^q 
q'èpèq 
Kp^q' 

r 

P 
q' 
P' 

P 
q 
P' 

S 

P' 
2 
P 

P' 
2' 
P 

These inequalities are included in the following theorem. 

THEOREM 2. If x and y are elements of\p{\q}, (p>l, <Z>1), then 
(5.1) is true whenever the point (r, s) is in the common part of the re-
gions determined by the inequalities 

(5.2) r è ^ O l , r(q - 1) ^ s à r' 

when Kq^2, or 

(5.3) r^p^s>l, r(q' - l ) è ^ / 

when q^2. 

As we have already seen, any case of Theorem 2 implies that the 
spaces Xp{Xa} are uniformly convex for p>l, q>l. 

To prove Theorem 2, we observe that (5.1) is (1.4) with 93?p[ • • • ] 
for || • • • ||. If we replace | • • • | by || • • • || in (2.2) and (2.3), the 
norm being the norm in \q, (2.2) and (2.3) are of course still valid, 
and we deduce that (5.1) holds if 

(5.4) (||a? + y||r + ||* - y\\Tlr ^ 2^'(|MI5 + IHI5)1/8 

with KsSpSr, the norm being a \q norm. We shall prove (5.4) in 
the cases specified by (5.2) and (5.3), and thus establish the corre
sponding cases of (5.1). 

To do this, we generalize the argument of §4; here Clarkson's in
equalities will replace the equality 

||* + y||2 + | | * -y | | 2 = 2(HI2 + IHI2), 



1940] UNIFORMLY CONVEX SPACES 309 

which is valid only in euclidean spaces (Jordan and von Neumann 
[7]). 

The form of Riesz's theorem used in §4 is equivalent to another 
theorem of Riesz on bilinear forms; S. Bochner and the author [2] 
have observed that the latter remains true, with an appropriate inter
pretation, when the variables involved are elements of a Banach 
space. I t follows that the convexity theorem for linear forms is also 
true (see §6). For our special case it states that 

(\\X+y\\l!a+\\x„y\\lla)a 

Matb = lOg SUp 

dMl1/6 + IHI1/6)6 

is convex in the triangle 0 ̂  a ̂  b S 1. (The least upper bound is taken 
as x and y vary over X3; the norms, of course, are Xs norms.) 

We may now formulate (5.4) as 

(5.5) MVr>V8 ^ (1/sO log 2, 1 < s ^ p S r < « . 

We have, in \ q (and in fact in any Banach space), 

Ifo,o = log 2, Afo.i = 0. 

Clarkson's inequalities (1.2) and (1.3) give us 

M1/q>1/q, S (1/q) log 2, q* 2 ; MVq>,Vq £ (1/q') log 2, 1 < q£ 2. 

Consequently (5.4) is true whenever (1/r, 1/s) is in the triangle with 
vertices (0, 0), (0, 1), {1/q, 1/q') if <Z^2, or in the triangle with ver
tices (0, 0), (0, 1), (1/V, 1/q) if 1 < ^ 2 , These points correspond to 
points (r, s), with r > l , satisfying the second inequalities (5.2) or 
(5.3). This completes the proof of Theorem 2. 

I t should be mentioned that certain cases of (5.2), adequate to 
establish the uniform convexity of Xp{Aff} for some (but not all) p 
and q, follow directly from Clarkson's inequalities without any con
vexity theorem. For example, if q§: 2, (5.4) becomes (1.2) for r = q, 
s = q'; hence (5.4) still holds for r^q, s^q'; therefore, if p^q'', we 
can take r = s=p and thus establish the uniform convexity of XP{X3} 
for p^q', q^2. 

6. The abstract convexity theorem. Let E be a Banach space, with 
elements x; let its conjugate space have elements ƒ (linear functionals 
on E). Let NCtb be the least upper bound of 

(6.1) 

for 

2 22 aafi(xi) 
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(6.2) 
t - l ƒ - ! 

I t is known8 that log Nc,b is convex in the triangle O ^ S ^ l , O ^ c ^ l , 

We wish to show that if Ma,b is the least upper bound of the ex
pression 

(6.3) 

for 

(6.4) 

/ n II m |[ l /a^ c 

V j - i II i= l II / 

ZINI1 '6^ i, 

then log Ma,b is convex in the triangle O ^ a ^ & ^ l . This we do by 
showing that Ma,b = Nc,b if c = l— a. 

Let {ƒ/} and {#,-} be arbitrary sets satisfying (6.2) with c = l—a. 
Then, by Holder's inequality, 

I m n I I n / m \\ 

I *=1 j= l I [ 7-1 \ t - l / I 

/ n \ 1—a / n || m 111/a\ a 

^ EI/l1"1-1 (Z 2>H ) 
\ y=i / \ y=i II Î = I II / 

^ A f a . 6 . 

Consequently9 

(6.5) Nc,b S Ma,b. 

Now let {xi} be an arbitrary set satisfying (6.4). We can find10 

linear functionals ƒ/, (j = 1, 2, • • • , »)_, such that 

ƒ: ( m \ Il m 

i = l / II * - l 

3 = 1, 2, 

IW I/o • j ClijXi 
1/a 

1, 2, . . . , » , 

with constant A 9^0] and ]C?»i|L/v||1/c==l- For these ƒ,- we have, using 
the conditions for equality in Holder's inequality, 

8 Boas and Bochner [2, p . 64] . 
9 This simple argument was suggested by the referee. 
1 0 Banach [ l , p . 5 S ] . 
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n m n / m \ 

Z Z a-afAxi) = Z ƒ?( S û<y^) 
3=1 t = l 3=1 \ t - 1 / 

= Z ll/îjl • Z ö.-ŷ  
3 = 1 II i=l II 

/ n \ 1—a / n 11 m 111 / a \ a 

= ZWI"H (E 2>H ) 
\ 2=1 / \ j - 1 II i=l II / 

( n |] m | | l / a \ a 

Z Z aaxi ) • 
ƒ*! H t=l || / Hence Ma,bûNCth if c = l— a; this, with (6.5), completes the proof. 
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