ON APPROXIMATELY CONTINUOUS FUNCTIONS

ISAIAH MAXIMOFF

In a very interesting paper Sur l'équation fonctionnelle $g(x) = f\phi(x)$, S. Braun^{*} established a series of theorems on the functional equation

$$g(x) = f[\phi(x)],$$

where g(x) and f(y) are given functions, and $\phi(x)$ is a function sought for. In this note, we consider the case for which $\phi(x)$ is an approximately continuous function.[†] A function f(x) is said to be approximately continuous at x_0 if the density at x_0 of the set $E[f(x_0), \epsilon]$ of all points x such that $|f(x) - f(x_0)| < \epsilon$ is equal to 1, no matter what ϵ is.

Let f(x) be a finite function of class 1 in $[0, 1] = [0 \le x \le 1]$, and let $\{y_n\}$ be the sequence of all rational numbers y_n such that there are two points x'_n and x''_n belonging to [0, 1] and satisfying the condition $f(x'_n) < y_n < f(x''_n)$. Let $E_{y_n}(E^{y_n})$, $(n = 1, 2, 3, \cdots)$, denote the set of all points x such that $f(x) < y_n$ $(f(x) > y_n)$. If z is an irrational number, let E_z (E^z) denote the sum of all the sets $E_{y_n}(E^{y_n})$ such that $y_n < z$ $(y_n > z)$. We now prove the following theorem:

THEOREM 1. A necessary and sufficient condition that a finite function $\phi(x)$ be approximately continuous in [0, 1] is that there exist a system of perfect sets

$$(\mathfrak{P}): \qquad \mathfrak{P}_{y_r}^n, \qquad \mathfrak{P}_n^{y_r}, \qquad r = 1, 2, 3, \cdots, n; n = 1, 2, 3, \cdots,$$

such that

(i) $E_{y_r} = \lim_{n \to \infty} \mathfrak{P}_{y_r}^n$, $E^{y_r} = \lim_{n \to \infty} \mathfrak{P}_n^{y_r}$, $\mathfrak{P}_{y_r}^n \subset \mathfrak{P}_{y_r}^{n+1} \subset E_{y_r}$, $\mathfrak{P}_n^{y_r} \subset \mathfrak{P}_{n+1}^{y_r}$ $\subset E^{y_r}$;

(ii) if $y_r < y_s$ and M is the greater of the integers r, s, every point of the set $\mathfrak{P}_{y_r}^n$ ($\mathfrak{P}_n^{y_s}$) is a density point of the set $\mathfrak{P}_{y_r}^n$ ($\mathfrak{P}_n^{y_r}$) for all $n \ge M$.

A point x of a set E will be called a density point in E if

$$\lim_{h=0} \left[\frac{1}{2h} \operatorname{meas} \left[(x - h, x + h)E \right] \right] = 1.$$

PROOF. Let x_0 be an arbitrary point in [0, 1], and let $f(x_0) = y_0$.

^{*} Fundamenta Mathematicae, vol. 28 (1937), pp. 294-302.

[†] A. Denjoy, Sur les fonctions dérivées sommables, Bulletin de la Société Mathématique de France, vol. 43 (1915), pp. 161-247, especially p. 165.

We suppose that y_0 is not the least upper bound (greatest lower bound) of f in [0, 1]. Then, if η is an arbitrary, positive, sufficiently small number, we have integers k_1 , k, s, s_1 such that $y_0 - \eta < y_{k_1} < y_k$ $< y_0 < y_s < y_{s_1} < y_0 + \eta$.

The point x_0 belongs to the set $E_{y_s} \cdot E_{y_{s_1}}$ as well as to the set $E^{y_k} \cdot E^{y_{k_1}}$. Consequently, x_0 belongs to the set $\mathfrak{P}_{y_s}^n \cdot \mathfrak{P}_{y_{s_1}}^n$ as well as to the set $\mathfrak{P}_n^{y_k} \cdot \mathfrak{P}_n^{y_{k_1}}$ for sufficiently large n. Thence x_0 is a density point in $\mathfrak{P}_{y_{s_1}}^n$ as well as in $\mathfrak{P}_n^{y_{k_1}}$; therefore x_0 is a density point in $\mathfrak{P}_{y_{s_1}}^n \cdot \mathfrak{P}_n^{y_{k_1}}$. But if $E[f(x_0), \eta]$ is the set of all points x satisfying the condition $|f(x) - f(x_0)| \leq \eta$, we have

$$\mathfrak{P}_{y_{s_1}}^n \cdot \mathfrak{P}_n^{y_{k_1}} \subset E_{y_{s_1}} \cdot E^{y_{k_1}} \subset E[f(x_0), \eta];$$

so that x_0 is a density point in $E[f(x_0), \eta]$.

We now suppose that y_0 is the least upper bound (greatest lower bound) of f in [0, 1]. Then, if η is an arbitrary, positive, sufficiently small number, we have integers k_1 , k (s, s_1) such that

$$y_0 - \eta < y_{k_1} < y_k < y_0 \quad (y_0 < y_s < y_{s_1} < y_0 + \eta).$$

The point x_0 belongs to the set

$$E^{\boldsymbol{y}_k} \cdot E^{\boldsymbol{y}_{k_1}} \quad (E_{\boldsymbol{y}_k} \cdot E_{\boldsymbol{y}_{k_1}}).$$

Consequently, x_0 belongs to the set

$$\mathfrak{P}_n^{\boldsymbol{y}_k} \cdot \mathfrak{P}_n^{\boldsymbol{y}_{k_1}} \quad (\mathfrak{P}_{\boldsymbol{y}_s}^n \cdot \mathfrak{P}_{\boldsymbol{y}_{s_1}}^n)$$

for sufficiently large *n*. Thence x_0 is a density point in $\mathfrak{P}_n^{y_{k_1}}$ $(\mathfrak{P}_{y_{k_1}}^n)$, and x_0 is therefore a density point in

$$E^{y_{k_1}} \subset E[f(x_0), \eta] \quad (E_{y_{s_1}} \subset E[f(x_0), \eta]),$$

so that x_0 is a density point in $E[f(x_0), \eta]$, and the sufficiency of the condition is established. To prove that the condition is necessary, we shall assume that f(x) is an approximately continuous function. In virtue of a Theorem of A. Denjoy,* in this case f(x) is a function of class 1. It follows that each of the sets E_{y_r} , E^{y_r} , $(r=1, 2, 3, \cdots)$, is the sum of an enumerable infinity of perfect sets and of an enumerable set N of points x_1, x_2, x_3, \cdots of [0, 1]. Let E denote an arbitrary one of the sets $E_{y_n}, E^{y_n}, (n=1, 2, 3, \cdots)$. Since f(x) is approximately continuous, we can find for every point x_n a perfect set $\mathfrak{P}(x_n)$ such that

^{*} Loc. cit., p. 181.

- (i) x_n is a density point of $\mathfrak{P}(x_n)$;
- (ii) f(x) is continuous at the point x_0 over $\mathfrak{P}(x_n)$ relative to $\mathfrak{P}(x_n)$;
- (iii) $\mathfrak{P}(x_n)$ is contained in E.

In this case $\mathfrak{P}(x_n)$ will be called the perfect and dense *road* at the point x_n . It is clear that E is the sum of perfect sets and of sets $\mathfrak{P}(x_n)$, $(n = 1, 2, 3, 4, \cdots)$. Since $\mathfrak{P}(x_n)$ is perfect, E is the enumerable sum of perfect sets, and we may also write

$$E=\lim_{n=\infty}P_n,$$

where P_n is a perfect set such that $P_n \subset E$.

We have also

$$E_{y_r} = \lim_{n = \infty} P_{y_r}^n, \quad E_{y_s} = \lim_{n = \infty} P_{y_s}^n, \quad E^{y_r} = \lim_{n = \infty} P_n^{y_r}, \quad E^{y_s} = \lim_{n = \infty} P_n^{y_s},$$

where $P_{y_r}^n$, $P_{y_s}^n$, $P_n^{y_r}$, $P_n^{y_s}$, are perfect sets such that

$$P_{y_r}^n \subset E_{y_r}, \quad P_{y_s}^n \subset E_{y_s}, \quad P_n^{y_r} \subset E^{y_r}, \quad P_n^{y_s} \subset E^{y_s}.$$

Hence on putting $\mathfrak{P}_{y_s}^n = P_{y_s}^n + P_{y_r}^n$, $\mathfrak{P}_n^{y_r} = P_n^{y_r} + P_n^{y_s}$, we have

$$E_{y_s} = \lim_{n = \infty} \mathfrak{P}_{y_s}^n, \qquad E^{y_r} = \lim_{n = \infty} \mathfrak{P}_n^{y_r}.$$

It is easily seen that

$$\mathfrak{P}_{y_r}^n \subset \mathfrak{P}_{y_s}^n, \qquad \mathfrak{P}_n^{y_s} \subset \mathfrak{P}_n^{y_r}.$$

Let (a, b) be any contiguous interval of the set $\mathfrak{P}_{y_r}^n$ $(\mathfrak{P}_n^{y_s})$. We shall construct a perfect set Q_{ab} (R_{ab}) such that

(i) $Q_{ab} \subset E_{y_r}, R_{ab} \subset E^{y_s};$

(ii) every point of the set $\mathfrak{P}_{y_r}^n$ ($\mathfrak{P}_n^{y_s}$) is the density point of the set

$$\mathfrak{Q}_{y_r}^n = \mathfrak{P}_{y_r}^n + \sum_{ab} Q_{ab} \bigg(\mathfrak{Q}_n^{y_s} = \mathfrak{P}_n^{y_s} + \sum_{ab} R_{ab} \bigg).^*$$

Now we can adjoin the set $\mathfrak{Q}_{y_r}^n$ $(\mathfrak{Q}_n^{y_s})$ to the set $\mathfrak{P}_{y_s}^n$ $(\mathfrak{P}_n^{y_r})$. Thus, without loss of generality, we may assume that every point of the set $\mathfrak{P}_{y_r}^n$ $(\mathfrak{P}_n^{y_s})$ is a density point of the set $\mathfrak{P}_{y_s}^n$ $(\mathfrak{P}_n^{y_r})$ for all $n \geq M$.

We now turn to the functional equation

$$g(x) = f[\phi(x)].$$

Consider the sequence of all rational numbers $(y): y_1, y_2, y_3, \cdots$.

266

^{*} See V. Bogomoloff, Sur une classe des fonctions asymptotiquement continues, Recueil Mathématique, Moscow, vol. 32 (1924), pp. 152-171.

Let \mathfrak{E}_{y} , be the set of all points (x, y) such that

$$g(x) = f(y), \qquad y < y_r, 0 \le x \le 1,$$

and let \mathfrak{S}^{y_r} be the set of all points (x, y) such that

$$g(x) = f(y), \qquad y > y_r, 0 \le x \le 1.$$

Denote by $\mathfrak{P}\mathfrak{E}$ the orthogonal projection of a set \mathfrak{E} on the x axis.

Suppose now that M is the greater of the integers r, s, and assume $y_r < y_s$.

THEOREM 2. A necessary and sufficient condition that there exist a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the equation $g(x) = f[\phi(x)]$ is that there exist a sequence of perfect sets

$$(\mathfrak{P}): \qquad \mathfrak{P}_{y_r}^n, \quad \mathfrak{P}_n^{y_r}, \qquad r = 1, \, 2, \, 3, \, \cdots, \, n; \, n = 1, \, 2, \, 3, \, \cdots,$$

such that

(i) the sets satisfy

$$\lim_{n=\infty} \mathfrak{P}_{y_r}^n \subset \mathfrak{PE}_{y_r}, \ \lim_{n=\infty} \mathfrak{P}_n^{y_r} \subset \mathfrak{PE}^{y_r}, \ \mathfrak{P}_{y_r}^n \subset \mathfrak{PE}_{y_r}^{r-1} \subset \mathfrak{PE}_{y_r}^{y_r}, \ \mathfrak{P}_n^{y_r} \subset \mathfrak{P}_{n+1}^{y_r} \subset \mathfrak{PE}^{y_r};$$

(ii) every point of the set $\mathfrak{P}_{y_r}^n$ $(\mathfrak{P}_n^{y_s})$ is a density point of the set $\begin{array}{l} \mathfrak{P}_{y_{\bullet}}^{n}\left(\mathfrak{P}_{n}^{y_{r}}\right) \text{ for all } n \geq M;\\ \text{(iii)} \quad \lim_{n = \infty} \sum_{r=1}^{r=n} \mathfrak{P}_{y_{r}}^{n} = \lim_{n = \infty} \sum_{r=1}^{r=n} \mathfrak{P}_{n}^{y_{r}} = \left[0 \leq x \leq 1\right]. \end{array}$

PROOF. To prove that the condition is necessary, we shall assume that there exists a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the equation $g(x) = f[\phi(x)]$. Let $\overline{\mathfrak{G}}_{y_r}(\overline{\mathfrak{G}}^{y_r})$ be the set of all points $[x, \phi(x)]$, where x belongs to the set $E_{y_r}(E^{y_r})$. It is clear that

 $\mathfrak{P}\overline{\mathfrak{G}}_{y_r} \subset \mathfrak{P}\mathfrak{G}_{y_r}, \qquad \mathfrak{P}\overline{\mathfrak{G}}^{y_r} \subset \mathfrak{P}\mathfrak{G}^{y_r}.$

Since $\mathfrak{F}\overline{\mathfrak{G}}_{y_r} = E_{y_r}$, $\mathfrak{F}\overline{\mathfrak{G}}^{y_r} = E^{y_r}$, we conclude at once that $E_{y_r} \subset \mathfrak{F}\mathfrak{G}_{y_r}$, $E^{y_r} \subset \mathfrak{PS}^{y_r}$. The sum of all sets E_{y_r} (E^{y_r}) is equal to the segment $[0 \leq x \leq 1]$, hence

(A)
$$\sum_{r=1}^{r=\infty} \mathfrak{P}\mathfrak{E}_{y_r} = \sum_{r=1}^{r=\infty} \mathfrak{P}\mathfrak{E}^{y_r} = [0 \leq x \leq 1].$$

In virtue of Theorem 1 for the function $\phi(x)$, there exists a sequence of perfect sets

$$(\mathfrak{P}): \qquad \mathfrak{P}_{y_r}^n, \qquad \mathfrak{P}_n^{y_r}$$

1939]

ISAIAH MAXIMOFF

satisfying the conditions of Theorem 1. It is readily seen that

(B)
$$\mathfrak{P}_{y_r}^n \subset \mathfrak{P}\mathfrak{E}_{y_r}, \qquad \mathfrak{P}_n^{y_r} \subset \mathfrak{P}\mathfrak{E}^{y_r}.$$

We have just seen that the condition is necessary; let us next show that it is sufficient. For this purpose, we shall assume that there exists a system of perfect sets

$$(\mathfrak{P}): \qquad \mathfrak{P}_{y_r}^n, \qquad \mathfrak{P}_n^{y_r}, \qquad r = 1, 2, 3, \cdots, n; n = 1, 2, 3, \cdots,$$

satisfying the following conditions:

(i) $\mathfrak{B}_{y_r}^n \subset \mathfrak{B}_{y_r}^{n+1} \subset \mathfrak{B}\mathfrak{E}_{y_r}, \ \mathfrak{P}_n^{y_r} \subset \mathfrak{P}_{n+1}^{y_r} \subset \mathfrak{B}\mathfrak{E}^{y_r}.$

(ii) Every point of the set $\mathfrak{P}_{y_r}^n$ ($\mathfrak{P}_{y_s}^n$) is a density point of the set $\begin{array}{l} \mathfrak{P}_{y_s}^n \quad (\mathfrak{P}_n^{y_r}) \text{ for all } n \ge M. \\ \text{(iii)} \quad \lim_{n \to \infty} \sum_{r=1}^{r=n} \mathfrak{P}_{y_r}^n = \lim_{n \to \infty} \sum_{r=1}^{r=n} \mathfrak{P}_n^{y_r} = \left[0 \le x \le 1 \right]. \end{array}$

It follows that there exists a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the condition $g(x) = f[\phi(x)]$. In order to find the function $\phi(x)$, we shall proceed as follows. We first effect the uniformization* of the set \mathfrak{G}_{y_1} relative to the y axis over the set $\mathfrak{P}_{y_1}^1$; thus the value of the function $\phi(x)$ is determined at each point x of $\mathfrak{P}_{y_1}^1$. We next effect the uniformization of the set \mathfrak{S}^{y_1} over the set

$$R_1 = \mathfrak{P}_1^{\mathbf{y}_1} - \mathfrak{P}_1^{\mathbf{y}_1} \cdot \mathfrak{P}_{\mathbf{y}_1}^{\mathbf{y}_1}.$$

We set $U_1 = \mathfrak{P}_1^{y_1} + \mathfrak{P}_{y_1}^1$. We then effect the uniformization of the set \mathfrak{E}_{y_1} over the set

$$R_2 = \mathfrak{P}_{y_1}^2 - U_1 \cdot \mathfrak{P}_{y_1}^2.$$

Set $U_2 = U_1 + \mathfrak{P}_{y_1}^2$. We now effect the uniformization of the set \mathfrak{E}_{y_2} over the set

$$R_3 = \mathfrak{P}_{y_2}^2 - U_2 \cdot \mathfrak{P}_{y_2}^2$$

and set $U_3 = U_2 + \mathfrak{P}_{y_2}^2$. We next effect the uniformization of the set \mathfrak{E}_{y_1} over the set

$$R_4 = \mathfrak{P}_{y_1}^3 - U_3 \cdot \mathfrak{P}_{y_1}^3,$$

and so on.

We carry out this process until the function $\phi(x)$ is completely determined.

TCHEBOKSARY, U.S.S.R.

268

^{*} See N. Lusin, Sur le problème de M. Jacques Hadamard d'uniformisation des ensembles, Comptes Rendus de l'Académie, Paris, vol. 189 (1930), p. 349.