ON APPROXIMATELY CONTINUOUS FUNCTIONS

ISAIAH MAXIMOFF

In a very interesting paper Sur l'équation fonctionnelle $g(x)=f \phi(x)$, S . Braun* established a series of theorems on the functional equation

$$
g(x)=f[\phi(x)]
$$

where $g(x)$ and $f(y)$ are given functions, and $\phi(x)$ is a function sought for. In this note, we consider the case for which $\phi(x)$ is an approximately continuous function. \dagger A function $f(x)$ is said to be approximately continuous at x_{0} if the density at x_{0} of the set $E\left[f\left(x_{0}\right), \epsilon\right]$ of all points x such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ is equal to 1 , no matter what ϵ is.

Let $f(x)$ be a finite function of class 1 in $[0,1]=[0 \leqq x \leqq 1]$, and let $\left\{y_{n}\right\}$ be the sequence of all rational numbers y_{n} such that there are two points $x_{n}{ }^{\prime}$ and $x_{n}{ }^{\prime \prime}$ belonging to $[0,1]$ and satisfying the condition $f\left(x_{n}{ }^{\prime}\right)<y_{n}<f\left(x_{n}{ }^{\prime \prime}\right)$. Let $E_{y_{n}}\left(E^{y_{n}}\right),(n=1,2,3, \cdots)$, denote the set of all points x such that $f(x)<y_{n}\left(f(x)>y_{n}\right)$. If z is an irrational number, let $E_{z}\left(E^{z}\right)$ denote the sum of all the sets $E_{y_{n}}\left(E^{y_{n}}\right)$ such that $y_{n}<z\left(y_{n}>z\right)$. We now prove the following theorem:

Theorem 1. A necessary and sufficient condition that a finite function $\phi(x)$ be approximately continuous in $[0,1]$ is that there exist a system of perfect sets
$(\mathfrak{P}): \quad \mathfrak{B}_{y_{r}}^{n}, \quad \mathfrak{P}_{n}^{y_{r}}, \quad r=1,2,3, \cdots, n ; n=1,2,3, \cdots$,
such that
(i) $E_{y_{r}}=\lim _{n=\infty} \mathfrak{P}_{y_{r}}^{n}, E^{y_{r}}=\lim _{n=\infty} \mathfrak{P}_{n}^{y_{r}}, \mathfrak{P}_{y_{r}}^{n} \subset \mathfrak{P}_{y_{r}}^{n+1} \subset E_{y_{r}}, \mathfrak{P}_{n}^{y_{r}} \subset \mathfrak{P}_{n+1}^{y_{r}}$ c $E^{y_{r}}$;
(ii) if $y_{r}<y_{s}$ and M is the greater of the integers r, s, every point of the set $\mathfrak{P}_{y_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$ is a density point of the set $\mathfrak{P}_{y_{s}}^{n}\left(\mathfrak{P}_{n}^{y_{r}}\right)$ for all $n \geqq M$.

A point x of a set E will be called a density point in E if

$$
\lim _{h=0}\left[\frac{1}{2 h} \text { meas }[(x-h, x+h) E]\right]=1
$$

Proof. Let x_{0} be an arbitrary point in $[0,1]$, and let $f\left(x_{0}\right)=y_{0}$.

[^0]We suppose that y_{0} is not the least upper bound (greatest lower bound) of f in [0,1$]$. Then, if η is an arbitrary, positive, sufficiently small number, we have integers k_{1}, k, s, s_{1} such that $y_{0}-\eta<y_{k_{1}}<y_{k}$ $<y_{0}<y_{s}<y_{s_{1}}<y_{0}+\eta$.
The point x_{0} belongs to the set $E_{y_{0}} \cdot E_{y_{0_{1}}}$ as well as to the set $E^{y_{k}} \cdot E^{y_{k}}$: Consequently, x_{0} belongs to the set $\Re_{y_{s}}^{n} \cdot \Re_{y_{s_{1}}}^{n}$ as well as to the set $\mathfrak{P}_{n}^{y_{k}} \cdot \mathfrak{P}_{n}^{y_{k}}$ for sufficiently large n. Thence x_{0} is a density point in $\mathfrak{P}_{y_{\mathrm{s}_{1}}}^{n}$ as well as in $\mathfrak{P}_{n}^{y_{k_{1}}}$; therefore x_{0} is a density point in $\mathfrak{P}_{\nu_{s_{1}}}^{n} \cdot \mathfrak{P}_{n^{k_{1}}}^{y_{k_{1}}}$. But if $E\left[f\left(x_{0}\right), \eta\right]$ is the set of all points x satisfying the condition $\left|f(x)-f\left(x_{0}\right)\right| \leqq \eta$, we have

$$
\mathfrak{r}_{y_{s_{1}}}^{n} \cdot \Re_{n}^{y_{k_{1}}} \subset E_{y s s^{1}} \cdot E^{y_{k_{1}}} \subset E\left[f\left(x_{0}\right), \eta\right] ;
$$

so that x_{0} is a density point in $E\left[f\left(x_{0}\right), \eta\right]$.
We now suppose that y_{0} is the least upper bound (greatest lower bound) of f in $[0,1]$. Then, if η is an arbitrary, positive, sufficiently small number, we have integers $k_{1}, k\left(s, s_{1}\right)$ such that

$$
y_{0}-\eta<y_{k_{1}}<y_{k}<y_{0} \quad\left(y_{0}<y_{s}<y_{s_{1}}<y_{0}+\eta\right) .
$$

The point x_{0} belongs to the set

$$
E^{y_{k}} \cdot E^{y_{1 i}} \quad\left(E_{y_{s}} \cdot E_{y_{t}}\right) .
$$

Consequently, x_{0} belongs to the set

$$
\mathfrak{P}_{n}^{y_{k}} \cdot \mathfrak{P}_{n}^{y_{k_{1}}} \quad\left(\mathfrak{P}_{y_{s}}^{n} \cdot \mathfrak{F}_{y_{\varepsilon_{1}}^{n}}\right)
$$

for sufficiently large n. Thence x_{0} is a density point in $\mathfrak{P}_{n}^{y_{k_{1}}}\left(\mathfrak{P}_{y_{0_{1}}}^{n}\right)$, and x_{0} is therefore a density point in

$$
E^{y_{k_{1}}} \subset E\left[f\left(x_{0}\right), \eta\right] \quad\left(E_{y_{v_{1}}} \subset E\left[f\left(x_{0}\right), \eta\right]\right),
$$

so that x_{0} is a density point in $E\left[f\left(x_{0}\right), \eta\right]$, and the sufficiency of the condition is established. To prove that the condition is necessary, we shall assume that $f(x)$ is an approximately continuous function. In virtue of a Theorem of A. Denjoy,* in this case $f(x)$ is a function of class 1. It follows that each of the sets $E_{y_{r}}, E^{y_{r}},(r=1,2,3, \cdots)$, is the sum of an enumerable infinity of perfect sets and of an enumerable set N of points $x_{1}, x_{2}, x_{3}, \cdots$ of $[0,1]$. Let E denote an arbitrary one of the sets $E_{y_{n}}, E^{y_{n}},(n=1,2,3, \cdots)$. Since $f(x)$ is approximately continuous, we can find for every point x_{n} a perfect set $\mathfrak{P}\left(x_{n}\right)$ such that

[^1](i) x_{n} is a density point of $\mathfrak{P}\left(x_{n}\right)$;
(ii) $f(x)$ is continuous at the point x_{0} over $\mathfrak{P}\left(x_{n}\right)$ relative to $\mathfrak{P}\left(x_{n}\right)$;
(iii) $\mathfrak{P}\left(x_{n}\right)$ is contained in E.

In this case $\mathfrak{P}\left(x_{n}\right)$ will be called the perfect and dense road at the point x_{n}. It is clear that E is the sum of perfect sets and of sets $\mathfrak{P}\left(x_{n}\right),(n=1,2,3,4, \cdots)$. Since $\mathfrak{P}\left(x_{n}\right)$ is perfect, E is the enumerable sum of perfect sets, and we may also write

$$
E=\lim _{n=\infty} P_{n},
$$

where P_{n} is a perfect set such that $P_{n} \subset E$.
We have also

$$
E_{y_{r}}=\lim _{n=\infty} P_{y_{r}}^{n}, \quad E_{y_{s}}=\lim _{n=\infty} P_{y_{s}}^{n}, \quad E^{y_{r}}=\lim _{n=\infty} P_{n}^{y_{r}}, \quad E^{y_{s}}=\lim _{n=\infty} P_{n}^{y_{s}},
$$

where $P_{y_{r}}^{n}, P_{y_{s}}^{n}, P_{n}^{y_{r}}, P_{n}^{y_{s}}$, are perfect sets such that

$$
P_{y_{r}}^{n} \subset E_{y_{r}}, \quad P_{y_{s}}^{n} \subset E_{y_{s}}, \quad P_{n}^{y_{r}} \subset E^{y_{r}}, \quad P_{n}^{y_{s}} \subset E^{y_{s}}
$$

Hence on putting $\mathfrak{P}_{y_{s}}^{n}=P_{y_{s}}^{n}+P_{y_{r}}^{n}, \mathfrak{P}_{n}^{y_{r}}=P_{n}^{y_{r}}+P_{n}^{y_{s}}$, we have

$$
E_{y_{s}}=\lim _{n=\infty} \mathfrak{P}_{y_{s}}^{n}, \quad E^{y_{r}}=\lim _{n=\infty} \Re_{n}^{y_{r}} .
$$

It is easily seen that

$$
\mathfrak{P}_{y_{r}}^{n} \subset \mathfrak{P}_{y_{s}}^{n}, \quad \mathfrak{P}_{n}^{y_{s}} \subset \mathfrak{P}_{n}^{y_{r}} .
$$

Let (a, b) be any contiguous interval of the set $\mathfrak{P}_{\nu_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$. We shall construct a perfect set $Q_{a b}\left(R_{a b}\right)$ such that
(i) $Q_{a b} \subset E_{y_{r}}, R_{a b} \subset E^{y_{s}}$;
(ii) every point of the set $\mathfrak{P}_{y_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$ is the density point of the set

$$
\mathfrak{Q}_{y_{r}}^{n}=\mathfrak{P}_{y_{r}}^{n}+\sum_{a b} Q_{a b}\left(\mathfrak{Q}_{n}^{y_{s}}=\mathfrak{P}_{n}^{y_{s}}+\sum_{a b} R_{a b}\right) . *
$$

Now we can adjoin the set $\mathfrak{Q}_{y_{r}}^{n}\left(\mathfrak{Q}_{n}^{y_{s}}\right)$ to the set $\mathfrak{P}_{y_{s}}^{n}\left(\mathfrak{P}_{n}^{y_{r}}\right)$. Thus, without loss of generality, we may assume that every point of the set $\mathfrak{P}_{y_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$ is a density point of the set $\mathfrak{P}_{y_{s}}^{n}\left(\mathfrak{P}_{n}^{y_{r}}\right)$ for all $n \geqq M$.

We now turn to the functional equation

$$
g(x)=f[\phi(x)] .
$$

Consider the sequence of all rational numbers $(y): y_{1}, y_{2}, y_{3}, \cdots$.

[^2]Let $\mathbb{E}_{y_{r}}$ be the set of all points (x, y) such that

$$
g(x)=f(y), \quad y<y_{r}, 0 \leqq x \leqq 1
$$

and let \& ${ }^{y_{r}}$ be the set of all points (x, y) such that

$$
g(x)=f(y), \quad y>y_{r}, 0 \leqq x \leqq 1
$$

Denote by $\mathfrak{B} \mathbb{C}$ the orthogonal projection of a set \mathbb{E} on the x axis.
Suppose now that M is the greater of the integers r, s, and assume $y_{r}<y_{s}$.

Theorem 2. A necessary and sufficient condition that there exist a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the equation $g(x)=f[\phi(x)]$ is that there exist a sequence of perfect sets
$(\mathfrak{F}): \quad \mathfrak{P}_{y_{r}}^{n}, \quad \mathfrak{P}_{n}^{y_{r}}, \quad r=1,2,3, \cdots, n ; n=1,2,3, \cdots$,
such that
(i) the sets satisfy

(ii) every point of the set $\mathfrak{P}_{y_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$ is a density point of the set $\mathfrak{P}_{y_{d}}^{n}\left(\mathfrak{F}_{n}^{y_{r}}\right)$ for all $n \geqq M$;
(iii) $\lim _{n=\infty} \sum_{r=1}^{r=n} \mathfrak{P}_{y_{r}}^{n}=\lim _{n=\infty} \sum_{r=1}^{r=n} \mathfrak{P}_{n}^{y_{r}}=[0 \leqq x \leqq 1]$.

Proof. To prove that the condition is necessary, we shall assume that there exists a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the equation $g(x)=f[\phi(x)]$. Let $\overline{\mathbb{E}}_{y_{r}}\left(\overline{\mathbb{E}}^{y}{ }^{2}\right)$ be the set of all points $[x, \phi(x)]$, where x belongs to the set $E_{y_{r}}\left(E^{y_{r}}\right)$. It is clear that

$$
\mathfrak{P} \overline{\mathfrak{E}}_{y_{r}} \subset \mathfrak{B} \mathfrak{E}_{y_{r}}, \quad \mathfrak{B} \overline{\mathfrak{E}}^{y_{r}} \subset \mathfrak{P} \mathbb{ङ}^{y_{r}} .
$$

Since $\mathfrak{P} \overline{\mathbb{E}}_{y_{r}}=E_{y_{r}}, \mathfrak{B} \overline{\mathfrak{E}}^{y_{r}}=E^{y_{r}}$, we conclude at once that $E_{y_{r}} \subset \mathfrak{B} \S_{y_{r}}$, $E^{y_{r}} \subset \mathfrak{B} \mathbb{C}^{y_{r}}$. The sum of all sets $E_{y_{r}}\left(E^{y_{r}}\right)$ is equal to the segment [$0 \leqq x \leqq 1$], hence

$$
\begin{equation*}
\sum_{r=1}^{r=\infty} \mathfrak{P} \mathfrak{y}_{y_{r}}=\sum_{r=1}^{r=\infty} \mathfrak{P} \mathscr{C}^{y_{r}}=[0 \leqq x \leqq 1] . \tag{A}
\end{equation*}
$$

In virtue of Theorem 1 for the function $\phi(x)$, there exists a sequence of perfect sets

$$
(\mathfrak{P}): \quad \mathfrak{P}_{y_{r}}^{n}, \quad \mathfrak{B}_{n}^{y_{r}}
$$

satisfying the conditions of Theorem 1. It is readily seen that

$$
\begin{equation*}
\mathfrak{P}_{y_{r}}^{n} \subset \mathfrak{B} \mathfrak{E}_{y_{r}}, \quad \mathfrak{P}_{n}^{y_{r}} \subset \mathfrak{B} \mathscr{C}^{y_{r}} . \tag{B}
\end{equation*}
$$

We have just seen that the condition is necessary; let us next show that it is sufficient. For this purpose, we shall assume that there exists a system of perfect sets

$$
(\mathfrak{B}): \quad \mathfrak{B}_{y_{r}}^{n}, \quad \mathfrak{B}_{n}^{y_{r}}, \quad r=1,2,3, \cdots, n ; n=1,2,3, \cdots,
$$

satisfying the following conditions:
(i) $\mathfrak{P}_{\nu_{r}}^{n} \subset \mathfrak{P}_{y_{r}}^{n+1} \subset \mathfrak{B} \mathfrak{y}_{y_{r}}, \mathfrak{P}_{n}^{y_{r}} \subset \mathfrak{P}_{n+1}^{y_{r}} \subset \mathfrak{F}_{\underbrace{y_{r}}}$.
(ii) Every point of the set $\mathfrak{P}_{y_{r}}^{n}\left(\mathfrak{P}_{n}^{y_{s}}\right)$ is a density point of the set $\mathfrak{P}_{\nu_{s}}^{n}\left(\mathfrak{P}_{n}^{y_{r}}\right)$ for all $n \geqq M$.
(iii) $\lim _{n=\infty} \sum_{r=1}^{r=n} \mathfrak{P}_{y_{r}}^{n}=\lim _{n=\infty} \sum_{r=1}^{r=n} \mathfrak{P}_{n}^{y_{r}}=[0 \leqq x \leqq 1]$.

It follows that there exists a finite function $\phi(x)$ of class 1 having the property of Darboux and satisfying the condition $g(x)=f[\phi(x)]$. In order to find the function $\phi(x)$, we shall proceed as follows. We first effect the uniformization* of the set $\mathfrak{F}_{y_{1}}$ relative to the y axis over the set $\mathfrak{B}_{y_{1}}^{1}$; thus the value of the function $\phi(x)$ is determined at each 'point x of $\mathfrak{P}_{y_{1}}^{1}$. We next effect the uniformization of the set $\mathbb{C} y_{1}$ over the set

$$
R_{1}=\mathfrak{P}_{1}^{y_{1}}-\mathfrak{B}_{1}^{y_{1}} \cdot \mathfrak{P}_{y_{1}}^{1} .
$$

We set $U_{1}=\mathfrak{P}_{1}^{y_{1}}+\mathfrak{P}_{y_{1}}^{1}$. We then effect the uniformization of the set $\mathfrak{E}_{y_{1}}$ over the set

$$
R_{2}=\mathfrak{F}_{y_{1}}^{2}-U_{1} \cdot \mathfrak{P}_{y_{1}}^{2}
$$

Set $U_{2}=U_{1}+\mathfrak{P}_{y_{1}}^{2}$. We now effect the uniformization of the set $\mathbb{E}_{y_{2}}$ over the set

$$
R_{3}=\mathfrak{F}_{y_{2}}^{2}-U_{2} \cdot \mathfrak{B}_{y_{2}}^{2}
$$

and set $U_{3}=U_{2}+\mathfrak{P}_{y_{2}}^{2}$. We next effect the uniformization of the set $\mathfrak{E}_{y_{1}}$ over the set

$$
R_{4}=\mathfrak{P}_{y_{1}}^{3}-U_{3} \cdot \mathfrak{P}_{y_{1}}^{3}
$$

and so on.
We carry out this process until the function $\phi(x)$ is completely determined.

Tcheborsary, U.S.S.R.

[^3]
[^0]: * Fundamenta Mathematicae, vol. 28 (1937), pp. 294-302.
 \dagger A. Denjoy, Sur les fonctions dérivées sommables, Bulletin de la Société Mathématique de France, vol. 43 (1915), pp. 161-247, especially p. 165.

[^1]: * Loc. cit., p. 181.

[^2]: * See V. Bogomoloff, Sur une classe des fonctions asymptotiquement continues, Recueil Mathématique, Moscow, vol. 32 (1924), pp. 152-171.

[^3]: * See N. Lusin, Sur le problème de M. Jacques Hadamard d'uniformisation des ensembles, Comptes Rendus de l'Académie, Paris, vol. 189 (1930), p. 349.

