REPRESENTATION OF NUMBERS IN TERNARY QUADRATIC FORMS

E. ROSENTHALL

We employ integral quaternions $t=t_{0}+t_{1} i_{1}+t_{2} i_{2}+t_{3} i_{3}$, where the coordinates t_{i} range over rational integers, while the i_{1}, i_{2}, i_{3}, satisfy the multiplication table

$$
\begin{array}{cl}
i_{1}{ }^{2}=i_{2}{ }^{2}=-2, \quad i_{3}{ }^{2}=-3, & i_{2} i_{3}=2 i_{1}-i_{2}=\left(\overline{i_{3} i_{2}}\right) \\
i_{3} i_{1}=-i_{1}+2 i_{2}=\left(\overline{i_{1} i_{3}}, \quad,\right. & i_{1} i_{2}=-1+i_{3}=\left(\overline{i_{2} i_{1}}\right),
\end{array}
$$

and $\bar{t}=t_{0}-t_{1} i_{1}-t_{2} i_{2}-t_{3} i_{3}$ is the conjugate to t. The norm $N(t)$ of t is $t \bar{t}=\bar{t} t=t_{0}{ }^{2}+2 t_{1}{ }^{2}+2 t_{2}{ }^{2}+2 t_{1} t_{2}+3 t_{3}{ }^{2}$. The norm of a product of two quaternions equals the product of their norms, and $\bar{v} t=\bar{t} \bar{v}$ for any two quaternions. The associative law $r s \cdot t=r \cdot s t$ holds.

The quaternary quadratic $Q=t_{0}{ }^{2}+2 t_{1}{ }^{2}+2 t_{2}{ }^{2}+2 t_{1} t_{2}+3 t_{3}{ }^{2}$ has determinant 9 , the g.c.d. of the literal coefficients of the adjoint to Q is 3 , and the second concomitant of Q represents no residues 1 modulo 3, and as there is only one form of determinant 9 with these properties in Charve's table* of reduced quaternary quadratic forms, Q belongs to a genus of one class. Since Q represents 1 for two values of t_{0}, \cdots, t_{3}, we have, \dagger a proper quaternion being defined as one having coprime coordinates, the following theorem:

Theorem 1. A proper quaternion $v=v_{0}+v_{1} i_{1}+v_{2} i_{2}+v_{3} i_{3}$ whose norm is divisible by a positive integer m prime to 6 has exactly two rightdivisors (left-divisors) t and -t of norm m.

Every proper pure quaternion $s=s_{1} i_{1}+s_{2} i_{2}+s_{3} i_{3}$ of norm $k m^{2}$ is of form $\bar{t} a t$ where $N(a)=k$ and $N(t)=m$. For, $s=v t$ where $N(t)=m$ by Theorem $1 ; \bar{s}=-s=\bar{t} \bar{v}$, and \bar{t} is a left-divisor of s. Hence, since $N(v)=k m, \bar{t}$ is a left-divisor of the proper quaternion $v, v=\bar{t} a$. Hence $s=\bar{t} a t, N(a)=k$. Clearly a is pure since $\bar{t} \bar{a} t=-\bar{t} a t, \bar{a}=-a$.

Theorem 2. Consider the equation $24 n+1=x_{1}{ }^{2}+2 x_{2}{ }^{2}+2 x_{3}{ }^{2}-2 x_{2} x_{3}$. If $24 n+1=m^{2},(m>0)$, then all proper solutions are of type A if $m \equiv 1$ $(\bmod 4)$ but of type B if $m \equiv 3(\bmod 4)$, where

$$
A: x_{1} \equiv \pm 1(\bmod 12), \quad B: x_{1} \equiv \pm 5(\bmod 12)
$$

[^0]If $24 n+1$ is not a square, there are equally many solutions of each type A and B.

A proof for the case in which $24 n+1=m^{2}$ follows. Consider

$$
\begin{equation*}
h=x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{2} x_{3} . \tag{1}
\end{equation*}
$$

Then
$3 h=3 x_{1}^{2}+2\left(-x_{2}-x_{3}\right)^{2}+2\left(-x_{2}-x_{3}\right)\left(2 x_{2}-x_{3}\right)+2\left(2 x_{2}-x_{3}\right)^{2}$.
Put $h=m^{2}$, and let $x=i_{1}\left(-x_{2}-x_{3}\right)+i_{2}\left(2 x_{2}-x_{3}\right)+i_{3} x_{1}$ represent a solution (x_{1}, x_{2}, x_{3}) of (1); then all proper pure quaternions x are given by $x=\bar{t} a t, N(t)=m, N(a)=3$, and from the latter condition we must have $a= \pm i_{3}$. Expanding $\bar{t} a t$ gives $x_{1}=3 t_{3}{ }^{2}-2 t_{1}{ }^{2}-2 t_{2}{ }^{2}-2 t_{1} t_{2}+t_{0}{ }^{2}$ where only $a=i_{3}$ is considered since $a=-i_{3}$ merely changes the sign of x_{1} which leaves A and B unaltered.

Thus $x_{1} \equiv m(\bmod 4)$. Since $(m, 3)=1, x_{1} \equiv 1(\bmod 3)$; hence when $m \equiv 1(\bmod 4), x_{1} \equiv \pm 1(\bmod 12)$, a solution of type A, but if $m \equiv 3$ $(\bmod 4)$, then $x_{1} \equiv \pm 5(\bmod 12)$, a solution of type B.

The case for $h=24 n+1$ not a square will now be considered. Let x be a representative solution of (1) under this condition. We can choose an odd prime p such that simultaneously

$$
\begin{equation*}
(-3 h \mid p)=1, \quad p \equiv 11(\bmod 12) \tag{2}
\end{equation*}
$$

By the first equation in (2) we can choose x_{0} so that $3 x_{0}{ }^{2}+h \equiv 0$ $(\bmod p)$. Then by Theorem $1,3 x_{0}+x$ has exactly two right-divisors $\pm t$ of norm p, say

$$
3 x_{0}+x=u t, \quad N(t)=p
$$

Then

$$
\begin{equation*}
t x \bar{t}=p y, \quad \text { where } \quad y=t u-3 x_{0} \tag{3}
\end{equation*}
$$

and y represents another solution of (1). If t is replaced by $-t, y$ is unchanged.

We shall prove that x and y are in opposite classes A and B in view of the second equation of (2), and as multiplication by p does not alter A or B, it will suffice to show that x and $t x \bar{t}$ are solutions of opposite types.

Setting $t x \bar{t}=i_{1}\left(-y_{2}-y_{3}\right)+i_{2}\left(2 y_{2}-y_{3}\right)+i_{3} y_{1}$ and expanding gives

$$
\begin{aligned}
y_{1}=x_{1}\left(t_{0}{ }^{2}+3 t_{3}{ }^{2}-2 t_{2}{ }^{2}-2 t_{1}{ }^{2}-\right. & \left.2 t_{1} t_{2}\right)+x_{2}\left(6 t_{2} t_{3}+4 t_{1} t_{0}+2 t_{2} t_{0}\right) \\
& +x_{3}\left(-6 t_{2} t_{3}-6 t_{3} t_{1}+2 t_{2} t_{0}-2 t_{1} t_{0}\right)
\end{aligned}
$$

In (1), x_{2} and x_{3} are always even, and thus

$$
y_{1} \equiv 3 x_{1}(\bmod 4), \quad y_{1} \equiv x_{1}(\bmod 3)
$$

as $N(t) \equiv 11(\bmod 12)$. Hence y represents a solution of type opposite to x.

We can now establish the $(1,1)$ correspondence. We employ the preceding process for a fixed p, with x_{0} for a solution of type A, but $-x_{0}$ for a solution of type B. Hence if our process carries x, a solution of type A, into y, then y is carried into x. For from (3)

$$
3\left(-x_{0}\right)+y=(-\bar{u}) \bar{t}, \quad N(\bar{t})=p
$$

Then, $\bar{t} y t=p x, x=u t-3 x_{0}$. Further, two distinct solutions of one type cannot correspond to the same solution of the other type.

Application of other types of quaternions furnishes arithmetical proofs of the following additional results:

For representation of $24 n+1$ in $x_{1}{ }^{2}+3 x_{2}{ }^{2}+3 x_{3}{ }^{2}$ the A and B relations are

$$
\begin{aligned}
A: & x_{1} \equiv \pm 1(\bmod 12), x_{2} \text { and } x_{3} \equiv 0(\bmod 4) \\
& x_{1} \equiv \pm 5(\bmod 12), x_{2} \text { and } x_{3} \equiv 2(\bmod 4) \\
B: & x_{1} \equiv \pm 1(\bmod 12), x_{2} \text { and } x_{3} \equiv 2(\bmod 4) \\
& x_{1} \equiv \pm 5(\bmod 12), x_{2} \text { and } x_{3} \equiv 0(\bmod 4)
\end{aligned}
$$

For $2(24 n+1)=3 x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}$

$$
\begin{aligned}
& A:(0 ; 1,1),(0 ; 7,7),(0 ; 11,5),(4 ; 5,5),(4 ; 11,11),(4 ; 7,1), \\
& B:(4 ; 1,1),(4 ; 7,7),(4 ; 11,5),(0 ; 5,5),(0 ; 11,11),(0 ; 7,1)
\end{aligned}
$$

where each triplet $\left(x_{1} ; x_{2}, x_{3}\right)$ lists the least absolute residues x_{1} $(\bmod 8), x_{2}(\bmod 24), x_{3}(\bmod 24)$ in a definite order.

For either form if $24 n+1=m^{2},(m>0)$, all solutions are of type A if $m \equiv 1(\bmod 6)$, but of type B if $m \equiv 5(\bmod 6)$. But there are equally many solutions of each type if $24 n+1$ is not a square.

These results were proved in the writer's thesis at McGill University, 1938.

McGill University

[^0]: * L. Charve, Comptes Rendus de l'Académie des Sciences, vol. 96 (1883), p. 773.
 \dagger G. Pall, On the factorization of generalized quaternions, submitted to the Duke Mathematical Journal.

