REPRESENTATION OF NUMBERS IN TERNARY
QUADRATIC FORMS

E. ROSENTHALL

We employ integral quaternions ¢ = fo+ #1814 262+ 1523, where the co-
ordinates ¢; range over rational integers, while the 1, 7, 73, satisfy the
multiplication table

’l:12 = ’I:22 = - 2, 1:32 = - 3, '1:21:3 = 2i1 - 1:2 = (i3i2),

Ggiy = — i1+ 2dy = (i1d), iy = — 1+ 45 = (i211),

and [=1#y—t%1— tyiz — t5i3 is the conjugate to ¢£. The norm N(¢) of ¢ is
H=10t=1t2 4242+ 2t +2t:it,+3t2. The norm of a product of two qua-
ternions equals the product of their norms, and »t=175 for any two
quaternions. The associative law rs-¢=r-st holds.

The quaternary quadratic Q =i¢ + 242 4 242 + 2182+ 3¢2 has deter-
minant 9, the g.c.d. of the literal coefficients of the adjoint to Q is 3,
and the second concomitant of Q represents no residues 1 modulo 3,
and as there is only one form of determinant 9 with these properties
in Charve’s table* of reduced quaternary quadratic forms, Q belongs
to a genus of one class. Since Q represents 1 for two valuesof ¢, - - - , I3,
we have,T a proper quaternion being defined as one having coprime
coordinates, the following theorem:

THEOREM 1. A proper quaternion v =vo-+v151-+v2i2 1303 whose norm
is divisible by a positive integer m prime to 6 has exactly two right-
divisors (left-divisors) t and —t of norm m.

Every proper pure quaternion s =s13;-+ 262+ 5385 of norm km? is of
form fat where N(a) =k and N(¢) =m. For, s=vt where N(tf) =m by

Theorem 1; §= —s=13, and { is a left-divisor of s. Hence, since
N(v) =km, { is a left-divisor of the proper quaternion v, v=1%a. Hence
s=tat, N(a) =k. Clearly a is pure since {at= —fat, 3= —a.

THEOREM 2. Consider the equation 24n-+1=1x2 +2x2 +2x5> — 2x9%3.
If 24n+1=m?, (m>0), then all proper solutions are of type A if m=1
(mod 4) but of type B if m=3 (mod 4), where

A: x1==1 (mod 12), B: x1=5 (mod 12).

* L. Charve, Comptes Rendus de I’Académie des Sciences, vol. 96 (1883), p. 773.
t G. Pall, On the factorization of gemeralized quaternions, submitted to the Duke
Mathematical Journal.
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If 24n+1 is not a square, there are equally many solutions of each type
A and B.

A proof for the case in which 24n+41 =m? follows. Consider
1) h = x2 4 252 + 2x2 — 2%xq9%;.
Then
3h = 3x2 4+ 2(— x2 — x3)2 + 2(— %2 — x3)(2%2 — x3) + 2(2x2 — x3)2.

Put & =m?, and let x =14;(—x2 — x3) +72(2x2 — x3) +73%; represent a solu-
tion (x1, ¥2, x3) of (1); then all proper pure quaternions x are given by
x=1lat, N(t)=m, N(a)=3, and from the latter condition we must
have a = +1;. Expanding lat gives x1 = 3t — 242 — 2t — 2t1ts+t¢ where
only a=1; is considered since @ = —1; merely changes the sign of x;
which leaves 4 and B unaltered.

Thus x1=m (mod 4). Since (m, 3)=1, x=1 (mod 3); hence when
m=1 (mod 4), x;=+1 (mod 12), a solution of type 4, but if m=3
(mod 4), then ;= 435 (mod 12), a solution of type B.

The case for 2=24n-+1 not a square will now be considered. Let x
be a representative solution of (1) under this condition. We can
choose an odd prime p such that simultaneously

) (—3k|p) =1, p=11 (mod 12).

By the first equation in (2) we can choose xo so that 3x¢*+%2=0
(mod p). Then by Theorem 1, 3x,+x has exactly two right-divisors
+¢ of norm p, say

3x0 + & = us, N@) = p.
Then
3) txl = py, where vy = tu — 3,

and y represents another solution of (1). If ¢ is replaced by —¢, ¥ is
unchanged.

We shall prove that x and v are in opposite classes 4 and B in view
of the second equation of (2), and as multiplication by p does not
alter 4 or B, it will suffice to show that x and ¢xf are solutions of op-
posite types.

Setting txf =11(—y2—v3) +12(2y2 — v3) +13v1 and expanding gives

Y = x1(to2 + 3t32 - 2t22 —_ 2f12 b 2t1t2) + x2(6t2t3 + 4t1to + ztzto)
+ xs(— 6t2t3 - 6t3t1 + 2t2to - 2t1to).

In (1), x2 and x5 are always even, and thus
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y1 = 3% (mod 4), y1 = %1 (mod 3)

as N(¢) =11 (mod 12). Hence y represents a solution of type opposite
to x.

We can now establish the (1, 1) correspondence. We employ the
preceding process for a fixed p, with x, for a solution of type 4, but
—x, for a solution of type B. Hence if our process carries x, a solution
of type 4, into y, then y is carried into x. For from (3)

3(—x) +y=(—-@f N =»p.

Then, ¥yt = px, x =ut— 3x,. Further, two distinct solutions of one type
cannot correspond to the same solution of the other type.
Application of other types of quaternions furnishes arithmetical
proofs of the following additional results:
For representation of 24n-+1 in x +3xs* +3x2 the 4 and B rela-
tions are
A: x1=+1 (mod 12), x; and x3=0 (mod 4),
x1==+5 (mod 12), x; and x3=2 (mod 4),

B: x;= =41 (mod 12), x» and x3=2 (mod 4),
x1= %35 (mod 12), x; and x3=0 (mod 4).

For 2(24n+1) = 3x +x2* +x32

4:(0;1,1), (0;7,7), (0; 11, 5), (4;5,5), (4; 11, 11), (4; 7, 1),
B: (4;1,1), (4;7,7), (4;11,5), (0;5,5), (0; 11, 11), (0; 7, 1),

where each triplet (x1; xs, x3) lists the least absolute residues x;
(mod 8), x2 (mod 24), x; (mod 24) in a definite order.

For either form if 24n+41=m?2, (m>0), all solutions are of type 4
if m=1 (mod 6), but of type B if m=5 (mod 6). But there are equally
many solutions of each type if 24z+1 is not a square.

These results were proved in the writer’s thesis at McGill Univer-
sity, 1938.
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