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We employ integral quaternions / = / o + t ó + t ó + / 3 % , where the co­
ordinates ti range over rational integers, while the i\, i2> H, satisfy the 
multiplication table 

fi2 = i2
2 = — 2, Û2 = — 3, i2iz = 2ii — i2 = ( ^ 2 ) , 

i3ii = — ii + 2f2 = (^1^3), hh = — 1 + h = (^2^1), 

and t = t0- hii — t2i2 — hid is the conjugate to £. The norm iV(£) of / is 
tt = tt = t0

2 +2h2 + 2t2
2 + 2/1/2+ 3/3

2. The norm of a product of two qua­
ternions equals the product of their norms, and vt — tv for any two 
quaternions. The associative law rs-t — r-st holds. 

The quaternary quadratic Q = t0
2 +2/i2 + 2/2

2 + 2W2+3/3
2 has deter­

minant 9, the g.c.d. of the literal coefficients of the adjoint to Q is 3, 
and the second concomitant of Q represents no residues 1 modulo 3, 
and as there is only one form of determinant 9 with these properties 
in Charve's table* of reduced quaternary quadratic forms, Q belongs 
to a genus of one class. Since Q represents 1 for two values of to, • • • , h, 
we have,f a proper quaternion being defined as one having coprime 
coordinates, the following theorem: 

THEOREM 1. A proper quaternion y = y 0 + ^ i + % + ^ 3 whose norm 
is divisible by a positive integer m prime to 6 has exactly two right-
divisors {left-divisors) t and —t of norm m. 

Every proper pure quaternion s = Sih+s2i2+ssiz of norm km2 is of 
form tat where N(a) =k and N(t) =m. For, s = vt where N(t) = m by 
Theorem 1; s= — s = tv, and J is a left-divisor of s. Hence, since 
N(v) = km, J is a left-divisor of the proper quaternion v, v~ta. Hence 
s — tat, N(a) —k. Clearly a is pure since ïât= —tat, a= — a. 

THEOREM 2. Consider the equation 24n + l =xi2 + 2x2
2 + 2x£ — 2x2xz. 

If 24n + 1 = m2, (m >0), then all proper solutions are of type A ifm^l 
(mod 4) but of type B if m = 3 (mod 4), where 

A: X I E S + I (mod 12), B: x i = ± 5 (mod 12). 

* L. Charve, Comptes Rendus de l'Académie des Sciences, vol. 96 (1883), p. 773. 
f G. Pall, On the factorization of generalized quaternions, submitted to the Duke 
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If 2én+l is not a square, there are equally many solutions of each type 
A and B. 

A proof for the case in which 24^ + 1 — m2 follows. Consider 

(1) h = xi2 + 2x2
2 + 2xg - 2*2*3. 

Then 

3h = 3xi2 + 2 ( - x2 - *3)2 + 2 ( - x2 - xz)(2x2 - *3) + 2(2*2 - *3)2 . 

Put h = rn2, and let x = i1( — x2 — x3) +i2(2x2 — #3) +i$Xi represent a solu­
tion (xi, x2, X3) of (1) ; then all proper pure quaternions x are given by 
x = tat, N(t)=rn, N(a)=3, and from the latter condition we must 
have a = ± i 3 . Expanding tat gives *i = 3/3

2 — 2/i2 — 2/2
2 — 2/i/2+/o2 where 

only a — iz is considered since a— —i9 merely changes the sign of Xi 
which leaves A and B unaltered. 

Thus Xi = m (mod 4). Since (rn> 3) = 1, xi = l (mod 3); hence when 
m = l (mod 4), Xi= ±1 (mod 12), a solution of type A, but if m^3 
(mod 4), then x i = ± 5 (mod 12), a solution of type B. 

The case for ^ = 24^ + 1 not a square will now be considered. Let x 
be a representative solution of (1) under this condition. We can 
choose an odd prime p such that simultaneously 

(2) ( - 3 * 1 / 0 = 1, £ s 11 (mod 12). 

By the first equation in (2) we can choose x0 so that 3x0
2+h^0 

(mod p). Then by Theorem 1, 3x0+x has exactly two right-divisors 
+ / of norm p, say 

3*o + x = ut, N(t) = p. 

Then 

(3) txt = py, where y = tu — 3*0 , 

and 3/ represents another solution of (1). If t is replaced by —t, y is 
unchanged. 

We shall prove that * and y are in opposite classes A and B in view 
of the second equation of (2), and as multiplication by p does not 
alter A or B, it will suffice to show that * and txt are solutions of op­
posite types. 

Setting txt = ii(—y2—y3) +i2(2y2—yz) +i*yi and expanding gives 

3>i = * iW + 3/3
2 - 2/2

2 - 2h2 - 2/1/2) + *2(6/2/3 + 4/i/o + 2/2/0) 

+ *3(— 6/2/3 — 6/3/i + 2/2/0 — 2/i/o). 

In (1), x2 and *3 are always even, and thus 
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yx == 3^i (mod 4), yi = ^i (mod 3) 

as N(t) = 11 (mod 12). Hence y represents a solution of type opposite 
to x. 

We can now establish the (1, 1) correspondence. We employ the 
preceding process for a fixed p, with x0 for a solution of type A, but 
— XQ for a solution of type B. Hence if our process carries x, a solution 
of type A, into y, then y is carried into x. For from (3) 

3(- *o) + y = ( - *)*, # ® = #• 
Then, tyt = pxy x = ut — 3xo. Further, two distinct solutions of one type 
cannot correspond to the same solution of the other type. 

Application of other types of quaternions furnishes arithmetical 
proofs of the following additional results: 

For representation of 24^ + 1 in xi2 +3x<? -\-3xg the A and B rela­
tions are 

A: # i = ± 1 (mod 12), x2 and tf3 = 0 (mod 4), 
# i = ± 5 (mod 12), #2 and #3 = 2 (mod 4), 

B: # i = ± 1 (mod 12), x% and x3 = 2 (mod 4), 
# i = ± 5 (mod 12), X2 and x3 = 0 (mod 4). 

For 2(24^ + 1) =3xi2 +x2
2 +xz

2 

A: (0; 1, 1), (0; 7, 7), (0; 11, 5), (4; 5, 5), (4; 11, 11), (4; 7, 1), 
B: (4; 1, 1), (4; 7, 7), (4; 11, 5), (0; 5, 5), (0; 11, 11), (0; 7, 1), 

where each triplet (xi; x2f x$) lists the least absolute residues x\ 
(mod 8), X2 (mod 24), x$ (mod 24) in a definite order. 

For either form if 2 4 ^ + 1 =m2 , (m>0), all solutions are of type A 
if m = 1 (mod 6), but of type i? if m = 5 (mod 6). But there are equally 
many solutions of each type if 24^ + 1 is not a square. 

These results were proved in the writer's thesis at McGill Univer­
sity, 1938. 
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