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NUMBER OF CYCLES OF THE SAME ORDER 
IN ANY GIYEN SUBSTITUTION GROUP* 

BY G. A. MILLER 

1. Introduction. If G is a transitive substitution group 
and if the subgroup composed of all the substitutions of G 
which omit a given letter is of degree n—«, then there are 
exactly a substitutions involving no letters except possibly 
those of G which are commutative with every substitution 
of (?. These a substitutions include the identity. If a > 1 
the remaining a—1 substitutions may or may not appear 
in G. From this well known theorem, it follows directly 
that G involves exactly a—1 sets of conjugate cycles which 
are such that no two distinct cycles of the set have a common 
letter. Each of these cycles appears in gin different sub
stitutions of G, where g denotes the order of G. A necessary 
and sufficient condition that a transitive substitution group 
be regular is that no two of its sets of conjugate cycles 
have a common letter. 

When no two conjugate cycles of G have a letter in 
common it is evident that every pair of cycles in a set of 
conjugates must be commutative, but these cycles may also 
be commutative when G is non-regular. When G involves 
at least one set of conjugate cycles which has the property 
that every pair of cycles in the set is composed of com
mutative cycles, G must be imprimitive unless all these 
cycles involve the same letters and are also of prime order. 
In this special case, G is evidently always primitive. From 
the fact that a cycle of prime degree p is transformed into 
each of its various powers which are incongruent to 1 (modp) 
only by substitutions of degree p—1 on the letters of this 
cycle it results directly that such substitutions involve cycles 
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that are not commutative for every such power. Hence we 
have the following theorem. 

THEOREM I. If every set of conjugate cycles of a transitive 
substitution group is composed of relatively commutative cycles, 
then the subgroups composed separately of all the substitutions 
of the group which omit a letter must omit a number of 
letters which is divisible by the product of the prime factors 
of the order of the group. 

In particular, it results from this theorem that a transitive 
group which has the property that all of its sets of con
jugate cycles are composed of cycles that are relatively 
commutative must also involve at least one set of conjugate 
cycles that is composed of cycles such that no two of them 
have a common letter. 

Suppose that G is intransitive and involves I transitive 
constituents of orders gu g2, . . . , g^ respectively. Let k 
represent the order of an arbitary cycle of some substitution 
of G. From the fact that the number of the letters con
tained in every set of conjugate cycles of any substitution 
group is equal to the order of the group, whenever each 
cycle is counted for every substitution in which it appears, 
it results directly that the numbers of the cycles of order 
k in the transitive constituents of G are, respectively, 

wiffi m2g2 mxgx 
k ' k ' ' " ' k ? 

where mx, m2l . . . , m<x are positive integers or zero, and 
that the number of cycles of order k contained in G is mg/k, 
where g is the order of G and m = mi-\-m2-\~ f-w* It 
should be noted that this theorem is independent of the 
way in which G is constructed by means of its transitive 
constituents, and that there are an infinite number of pos
sible groups for every arbitrary pair of values of m and k, 
since all of the cycles of the same order contained in the 
symmetric group of degree n are conjugate under this group. 

In particular, it results from the theorem noted above 
that if at least two of the transitive constituents of G in-
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volve cycles of the same order, the number of letters found 
in all of the cycles of this order contained in G must always 
exceed the order of G, each cycle being counted for every 
substitution in which it appears. It is evident that the 
numbers mu rn2, . . . , m^ cannot exceed the degrees of the 
corresponding transitive constituents diminished by one, and 
when they attain these maximal values k must be a prime 
number p and all the cycles of the corresponding constituents 
must be of order p. In particular, the order of such a 
constituent must be of the form pm. It should also be noted 
that all the substitutions of a given order k may be con
jugate under the group while the cycles of this order do 
not constitute a single set of conjugates, and that con
versely all the cycles of order k contained in a group may 
constitute a single set of conjugates while the substitutions 
of this order do not have this property. 

2. Smallest Number of Cycles of Order p in a Substitution 
Group of Order pm. If G is a substitution group of order 
pm, where p is a prime number, it results directly from 
the theorems noted above that the number of cycles of 
order p contained in G cannot be less than glp, and this 
minimum can be attained only when G is transitive. It is 
also evident that this minimum cannot be attained unless 
p = 2, since all the cycles of order p must be conjugate 
under G when it is attained. Hence we shall assume in 
the rest of this section, unless the contrary is stated, that 
p = 2, and that the number of the transpositions contained 
in the substitutions of G is exactly g/2. 

Since all of these transpositions are conjugate under G, 
they must appear in an invariant substitution of G. In 
fact, in every substitution group of order pm, where p is 
any prime number, all the cycles of order p that appear 
in an invariant substitution of order p constitute a com
plete set of conjugates and must therefore appear in more 
than one substitution whenever the group is non-regular. 
In the particular case under consideration, G involves only 

16 
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one set of conjugate cycles of order 2, and hence the sub
stitutions of order 2 contained in G, if there is more than one 
such substitution, generate an abelian invariant sub-group. 

Except in the trivial case when g = 2 there must be a 
substitution s of order 4 in G which permutes all the trans
positions of the invariant substitution of order 2 contained 
in G, since the transitive group according to which these 
transpositions are transformed contains an invariant sub
stitution of order 2. The group generated by s and the 
substitutions contained in G whose orders divide 2, is com
posed of substitutions of order 4 and of degree n, where 
n is the degree of G, in addition to the subgroup com
posed of the substitutions whose orders divide 2. Hence 
all of the substitutions of order 4 have a common square 
and the group generated by them is abelian. 

If G involves no substitutions whose orders exceed 4, 
the cycles of the invariant substitution of order 2 contained 
in the transitive group G must be transformed under G 
according to a regular group, since this group is transitive 
and involves only substitutions of order 2 besides the identity. 
Hence all of the substitutions of order 4 must have a common 
square and G can involve only one substitution of order 2, 
as otherwise all of the subgroups corresponding to subgroups 
of order 2 in the regular group according to which the cycles 
of order 2 are permuted could not be abelian. The order 
of this regular group cannot exceed 4, since a substitution 
of order 4 must transform into its inverse every substitution 
of this order which is not generated by it. This proves 
the following theorem. 

THEOREM II. If a transitive substitution group of order 
pm, where p is a prime number•, involves no substitution of 
order p%, and if the number of its cycles of order p ispm~x, 
then it must be regular and simply isomorphic with one of 
the following three groups: the quaternion group, the cyclic 
group of order 4, or the group of order 2. 

When m = n—2 for the cycles of a given order h found 
in the transitive group G of degree n, m must be unity for 
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the cycles of the other possible order and the latter cycles 
must constitute a single set of conjugates under G. It was 
noted above that k is either 2 or 4 when the order of G 
is a power of a prime number, From the theorem at the 
end of § 1, it results that when k = 2, G must be one of 
three groups. The fact that G must be the octic group 
when k = 4t will be proved in the following section. 

3. Minimum Number of Cycles of Order 4. When the 
cycles of order 4 in the transitive group G constitute a 
single set of conjugates, the subgroup composed of all the 
substitutions of G which omit a letter must involve at least 
one substitution besides the identity which omits at least 
two letters, since G cannot be regular and each of the 
cycles of the invariant substitution of order 2 contained 
in G is of order 2. It will first be proved that the cycles 
of order 2 found in the squares of the cycles of order 4 
contained in G may be assumed to appear in the invariant 
substitution of order 2. 

If this were not the case none of these squares could 
be commutative with all the cycles of this invariant sub
stitution, and hence these cycles would be transformed 
according to cycles of order 4 by the cycles of order 4 
contained in G. The transitive group according to which 
these cycles are transformed has a degree which is one-
half the degree of G, and hence two cycles of order 4 in 
G would correspond to one cycle of this order in this 
transitive group. The cycles of order 4 in G would there
fore be transformed under G according to an imprimitive 
group having two letters in each of these systems of im-
primitivity. In the transitive group according to which 
these cycles would be transformed, there would therefore 
be again a single set of conjugate cycles of order 4, while 
each of the remaining cycles would be of order 2. Since 
this transitive group would have a lower order than the 
original group, we may assume for the time being that G 
is a transitive group of lowest order having the properties 

16* 
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in question, and hence the squares of its cycles of order 4 
are found in the invariant substitution of order 2. 

Since the substitutions of G transform the cycles of the 
invariant substitution of order 2 according to a group which 
contains only operators of order 2, this group must be abelian; 
and since it is transitive, it must also be regular. If it is of 
order 2, G must be the octic group. If its order exceeds 2, 
the cycles of order 4 can appear in only one of the co-sets 
of G which correspond to the various substitutions of order 2 
according to which the cycles in the invariant substitutions 
are transformed under G, since all of these cycles of order 4 
would have to appear in such a co-set if one such cycle 
appears there, and all the substitutions of these co-sets 
must involve all the letters found in G. 

Therefore the order of the regular group in question 
cannot exceed 4, since at least one-fourth of the substitu
tions of G must have orders which exceed 2. Hence each 
substitution of order 4 contained in G, even when the squares 
of the cycles of order 4 contained in G are not found in 
the invariant substitution of order 2, is regular, and hence 
only one-fourth of the substitutions of G have an order 
greater than 2. It follows that G is either the octic group 
or the direct product of this group and an abelian group 
of type (1, 1,1, . . . ). Hence the degree of G cannot be 
less than half its order, and G must be the octic group if 
all its cycles of order 4 are conjugate. 

4. Non-Prime Power Transitive Groups in which m=n—2. 
When the order of the transitive group G is not a power of 
a prime number and the number of the cycles of order k 
contained in G is (n—2)g/k, where n is the degree of G, 
it results directly that all the cycles of G are of prime order. 
When n = 3, G is the symmetric group of order 6; and 
when n = 4, G is the alternating group of order 12. We 
shall therefore assume in what follows that n ^ - 4 unless 
the contrary is stated. 

It will be convenient to use the following general theorem. 
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THEOREM III* If a transitive substitution group which 
contains only one set of conjugate cycles of order h involves 
an invariant subgroup H such that H and each of the cor
responding co-sets involves all these conjugate cycles, then H 
must be transitive and must contain only one set of con
jugate cycles of order h 

Since each of these cycles appears in H and in every 
co-set of G with respect to H, it results directly that it 
has as many distinct conjugates under H as it has under G. 
That is, all these cycles form a single set of conjugates 
under H. If H were intransitive, all of these cycles would 
therefore appear in one and in only one of its transitive 
constituents. This is impossible since the transitive con
stituents of H are transformed transitively under G. 

It is now easy to prove that cycles of G which con
stitute a single set of conjugates must be of order 2. In 
fact, if these cycles were of prime order p > 3, the sub
stitutions which would transform one such cycle into all 
its different powers less than p would involve cycles of 
composite order. It remains therefore only to consider the 
case when these cycles are assumed to be of order 3. In 
this case there would also be cycles of order 2 in Ö, and 
hence the order of G would be of the form 2a3^. In par
ticular, G would be solvable. 

If G contains an invariant subgroup H of index 3 and 
all the cycles of order 3 are conjugate, each of the co-sets 
corresponding to the operators of order 3 in this quotient 
group involves all the different cycles of order 3 contained 
in G, and these cycles are also found in H. Hence it follows 
from Theorem II that H would be transitive and would 
involve only one set of conjugate cycles of order 3, while 
all of its other cycles would be of order 2. This subgroup 
being of the same degree as G could therefore be used 
in place of G. 

By repeating this process we finally would arrive at a 
transitive group which would be of the same degree as G 
and could be used for G, and which would have no in-
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variant subgroup of index 3. This group would therefore 
contain a subgroup of index 2 involving all of its cycles 
of order 3. If not all the remaining substitutions were of 
order 2, all the cycles of order 3 would again be conjugate 
under this invariant subgroup, and hence this subgroup 
would again be transitive and involve cycles of order 2. 
Since it may be assumed that all of the remaining sub
stitutions would be of order 2, this subgroup would have 
the property that each of its substitutions could correspond 
to its inverse in an automorphism, and hence it would be 
abelian. Since it would also be transitive, it would be 
regular. This is clearly impossible since it has been as
sumed that n > 4. We have therefore proved the following 
theorem. 

THEOREM IV. The symmetric group of degree 3 is the only 
non-prime power transitive group which has the properties 
that it involves cycles of only two different orders and that 
all the different cycles of the larger order are conjugate. 

When all of the different cycles of order 2 contained in 
O form a single set of conjugates, it may be assumed that 
G involves no subgroups of index 2. In fact, if there were 
such a subgroup each of the remaining substitutions would 
have to be of even order, and hence each of them would 
involve one and only one cycle of order 2, while the sub
group of index 2 would involve no cycle of order 2, and 
hence it would be of odd order. Since this is impossible, 
and since O is solvable, it follows that O involves an in
variant subgroup of index p, where p is an odd prime number. 
The order of O is therefore 2apP. 

T H E U N I V E K S I T Y OF I L L I N O I S 


