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MATHEMATICIAN?
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ABSTRACT. A personal and informal account of what a pure mathematician
might expect when using tools from deep learning in their research.

1. INTRODUCTION

Over the last decade, deep learning has found countless applications throughout
industry and science. However, its impact on pure mathematics has been modest.
This may be surprising, as some of the tasks at which deep learning excels—Ilike
playing the board game Go or finding patterns in complicated structures—appear
to present similar difficulties to problems encountered in research mathematics. On
the other hand, the ability to reason—probably the single most important defining
characteristic of mathematical enquiry—remains a central unsolved problem in ar-
tificial intelligence. Thus, mathematics can be seen as an important litmus test as
to what modern artificial intelligence can and cannot do.

There is great potential for interaction between mathematics and machine learn-
ing However, there is also a lot of hype, and it is easy for the mathematician to
be put off. In my experience, it remains hard to use deep learning to aid my math-
ematical research. But it is possible. One also has the sense that the potential,
once the right tools have been uncovered, is significant.

This is a very informal survey of what a working mathematician might expect
when using the tools of deep learning on mathematics problems. I outline some
of the beautiful ideas behind deep learning. I also give some practical hints for
using these tools. I finish with some examples where deep learning has been used
productively in pure mathematics research. (I hope it goes without saying that the
impact of deep learning on applied mathematics has been enormous.)

Finally, in my experience, the more one uses the tools of deep learning, the
more difficult it becomes not to ask oneself foundational questions about why they
work. This raises an entirely different set of questions. Although fascinating, the
mathematical theory of deep learning is not the focus here.
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I am a pure mathematician, working mostly in geometric representation theory and related
fields. I began an ongoing collaboration with DeepMind in 2020 on possible interactions of machine
learning and mathematics, and have been fascinated by the subject ever since.

1Tn 1948, Turing [Tur4$, §6] identifies games, mathematics, cryptography and language transla-
tion and acquisition as five “suitable branches of thought” in which experimentation with machine
intelligence might be fruitful.

(©2024 American Mathematical Society


https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1829

2 GEORDIE WILLIAMSON

Remark 1.1. The elephant in the room of any discussion of deep learning today is
the recent success of ChatGPT and other large language models. The internet is
full of examples of ChatGPT doing both very well and very poorly on reasoning
and mathematics problems. It seems likely that large language models will be
able to interact well with proof assistants in the near future (see, e.g., [HRW™21}
JWZ723]). It is also likely that a greater role will be played in mathematics research
by very large models, possibly with emergent capabilities (“foundation models” in
the language of the excellent Bommasani et al. [BHAT21]). The impacts of such
developments on mathematics are difficult to predict. In this article I will ignore
these questions entirely. Thus I will restrict myself to situations in which deep
learning can be used by mathematicians without access to these large models.

2. WHAT IS A NEURAL NETWORK?

Artificial neural networks emulate the biological neural networks present in the
brains of humans and other animals. Typically, this emulation takes place on a
computer. The idea of doing so is very natural. See [MP43|[Tur48] for remarkable
early accounts.

A cartoon picture of a neuron imagines it as a unit with several inputs and a
single output, which may then be connected to other neurons:

s}
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Neurons “fire” by emitting electrical charge along their axon. We may encode the

charges arriving along each node by a real number, in which case the charge emitted
by a neuron is given by

_/a;i//o z\ z:f(in),

where f is a (typically monotone increasing and nonlinear) activation function.
Soon we will assume that our activation function is ﬁxedg however, at this level of
precision the reader is encouraged to imagine something like f(z) = tanh(z). The
activation function is meant to model the nonlinear response curves of neurons to
stimuli. For example, some neurons may not fire until a certain charge is reached
at their sourced

Another important feature of neurons is that their firing may be excitatory or
inhibitory of downstream neurons to varying degrees. In order to account for this,

2and equal to “ReLU”: f(z) = max(0,z)

3In biological neural nets there is typically large variation in the responses of neurons to stimuli
depending on where they are in the brain (see, e.g., [HW62]). This is one of the many features of
biological neural nets that is usually ignored when building artificial neural networks.
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one allows modification of the input charges via weights (the w;):
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Thus positive and negative weights correspond to excitatory and inhibitory con-
nections respectively.

Having settled on a crude mathematical model of a single neuron, we may then
assemble them together to form a neural network:

Implicit in this picture is the assignment of a weight to each edge. Thus our neural
network yields a function which takes real valued inputs (5 in the above picture),
and outputs real values (2 above), via repeated application of (I]) at each node.

This is a good picture for the layperson to have in mind. It is useful to visualize
the complex interconnectedness present in artificial neural networks, as well as the
locality of the computation taking place. However, for the mathematician, one can
explain things a little differently. The configuration

.

/

is simply a complicated way of drawing a 5 X 4 matrix. In other words, we can
rewrite our neural network above economically in the form

RS Wy rt L4 W2 R2 S, R2

where the W; are linear maps determined by matrices of weights, and f is shorthand
for the coordinatewise application of our activation function f.
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For the purposes of this article, a vanilla neural networkf] is a gadget of the form

A
R ALy gle Ly g Az ds T pds Asy T ey 2y e

where A; are affine linear maps. We refer to R%,R?% ... R% as the layers of the

network. In order to simplify the discussion, we always assume that our activation

function f is given by ReLU (the “rectified linear unit”), that is,

f (Z )\iei) = Z max(A;,0)e;
where the e; are standard basis vectors.

Remark 2.1. We make the following remarks:

(1) The attentive reader might have observed a sleight of hand above, where we
suddenly allowed affine linear maps in our definition of a vanilla neural net.
This can be justified as follows: In biological neural nets both the charge
triggering a neuron to fire, as well as the charge emitted, varies across the
neural network. This suggests that each activation function should have
parameters, i.e., be given by z — f(z + a) + b for varying a,b € R at
each node. Things just got a lot more complicated! Affine linear maps
circumvent this issue: by adding the possibility of affine linear maps one
gets the same degree of expressivity with a much simpler setup.

(2) We only consider ReLU activation functions below. This is one of the
standard choices, and provides a useful simplification. However, one should
not forget that it is possible to vary activation functions.

(3) We have tried to motivate the above discussion of neural networks as some
imitation of neural activity. It is important to keep in mind that this is a
very loose metaphor at best. However, I do find it useful in understanding
and motivating basic concepts. For an excellent account along these lines
by David Mumford, the reader is referred to [Mum20].

(4) The alert reader will notice that we have implicitly assumed above that
our graphs representing neural networks do not have any cycles or loops.
Again, this is a simplification, and it is desirable in certain situations (e.g.,
in recurrent neural networks) to allow loops.

Vanilla neural networks are often referred to as fully-connected because each
neuron is connected to every neuron in the next layer. This is almost opposite to
the situation encountered in the brain, where remarkably sparse neural networks
are found. The connection pattern of neurons is referred to the architecture of the
neural network. As well as vanilla neural networks, important artificial neural net-
work architectures include convolutional neural networks, graph neural networks,
and transformers. Constraints of length prohibit us from discussing these architec-
tures in any depth.

Remark 2.2. More generally, the term “neural network” is often used to refer to
any program in which the output depends in a smooth way on the input (and thus
the program can be updated via some form of gradient descent). We ignore this
extra generality here.

4One often encounters the term “Multilayer Perceptron” (MLP) in the literature.
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3. MOTIVATION FOR DEEP LEARNING

In order to understand deep learning, it is useful to keep in mind the tasks
at which it first excelled. One of the most important such examples is image
classification. For example, we might want to classify hand-written digits:

»—>6 »—>2.

Here each digit is given as (say) a 28 x 28 matrix of grayscale values between 0
and 255. This is a task which is effortless for us, but is traditionally difficult for
computers.

We can imagine that our brain contains a function which sees a hand-written
digit and produces a probability distribution on {0,1,...,9}, i.e., “what digit we
think it is” [ We might attempt to imitate this function with a neural network.

Let us consider a simpler problem in which we try to decide whether a hand-
written digit is a 6 or not:

H “yeS” . H “no”.

We assume that we have “training data” consisting of images labelled by “6” or
“not 6”7. As a first attempt we might consider a network having a single linear
layer:

R28x28 A, p L/te™)
Here A is affine linear, and the second function (the “logistic function”)ﬁ is a conve-
nient way of converting an arbitrary real number into a probability. Thus, positive
values of A mean that we think our image is a 6, and negative values of A mean
we think it is not.

We will be successful if we can find a hyperplane separating all vectors corre-
sponding to sixes (red dots) from those that do not represent sixes (blue dots):

vectors in
R28 X 28

Of course, it may not be possible to find such a hyperplane. Also, even if we
find a hyperplane separating red and blue dots, it is not clear that such a rule
would generalize to correctly predict whether an unseen image (i.e., image not in
our training data) represents a 6 or not. Remarkably, techniques of this form (for
example logistic regression, Support Vector Machines (SVMs), ...) do work in
many simple learning scenarios. Given training data (e.g., a large set of vectors

5T can convince myself that my brain produces a probability distribution and not a yes/no
answer by recalling my efforts to decipher my grandmother’s letters when I was a child.
6a.k.a. sigmoid in the machine learning literature
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labelled with “yes” and “no”) the optimal separating hyperplane may be found
easily.

4. WHAT 1S DEEP LEARNING?

In many classification problems the classes are not linearly separable.

Linear methods such as SVM can nevertheless still be used in many cases, after
application of a suitable feature map, namely a (non-linear) transformation whose
application on the data makes linear separation of classes possible:

©® 0 000 00000000 OO 0000 O —

It is on such more difficult learning tasks that deep learning can come into its own.
The idea is that successive layers of the neural net transform the data gradually,
eventually leading to an easier learning problemﬁ

In the standard setting of supervised learning, we assume the existence of a
function

¢ :R" - R™,
and know a (usually large) number of its values. The task is to find a reasonable

approximation of ¢ given these known values. (The reader should keep in mind the
motivating problem of §3, where one wants to learn a function

d) . RQSXZS — Rlo

giving the probabilities that a certain 28 x 28-pixel grayscale image represents one
of the 10 digits 0, 1, ..., 9.)

We fix a network architecture, which, in our simple setting of a vanilla neural
net, means that we fix the number of layers ¢ and layer dimensions ng,...,np_1.
We then build a neural net (see §2)) which serves as our function approximator:

Ag_
2) ¢ RT A5 R S gre A2 pn Sy pee A S, pday Dol g

"For a striking mathematical example of support vector machines see [HK22], where SVMs are
trained to distinguish simple and nonsimple finite groups, by inspection of their multiplication
table.

8This idea seems to have been present in the machine learning literature for decades, see, e.g.,
[CBBHO9S|. It is well explained in [GBCI6} §6]. For illustrations of this as well as the connection
to fundamental questions in topology, see the work of Olah [OlaT4].
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To begin with, the affine linear maps A; are initialized via some (usually random)
initialization scheme, and hence the function ¢~ output by our neural network will
be random and have no relation to our target function ¢. We then measure the
distance between our function ¢~ and ¢ via some loss function L. (For example, L
might be the mean squared distance between the values of ¢ and ¢z.)|9 A crucial
assumption is that this loss function is differentiable in terms of the weights of
our neural network. Finally, we perform gradient descent with respect to the loss
function in order to update the parameters in () to (hopefully) better approximate
0.

In order to get an intuitive picture of what is happening during training, let
us assume that m = 1 (so we are trying to learn a scalar function), and that our
activation functions are ReLU. Thus ¢~ is the composition of affine linear and
piecewise linear functions, and hence is piecewise linear. As with any piecewise
linear function, we obtain a decomposition of R™ into polytopal regions

)

such that ¢ is affine linear on each region. As training progresses, the affine
linear functions move in a similar way to the learning of a line of best fit, but more
complex since the regions we are dealing with may also move, disappear, or spawn
new regions.

Remark 4.1. For an excellent interactive animation of a simple neural network
learning a classification task, the reader is urged to experiment with the Tensor
Flow Playground [SC]. Karpathy’s convolutional neural network demo [Kar] is also
illustrative.

Remark 4.2. Some remarks:

(1) Typically, one splits the known values of ¢ into two disjoint sets consisting
of training data and wvalidation data. Steps of gradient descent are only
performed using the training data, and the validation data allows us to pe-
riodically check whether our model is also making reasonable predictions at
points not present in the training data (“validation error”). It is sometimes
useful to have an additional set of test data, completely unseen during train-
ing, which one can use to compute the performance of the trained model
(“test error”).

9There are many subtleties here, and a good choice of loss function is one of them. In my
limited experience, neural networks do a lot better learning probability distributions than general
functions. When learning probability distributions, cross entropy [GBCI6l §3.13] is the loss
function of choice.



(2)

GEORDIE WILLIAMSON

In most applications of machine learning, the training data is enormous and
feeding it all through the neural network () in order to compute the loss
function is unduly expensive. Thus one usually employs stochastic gradient
descent: at every step the gradient of the loss function is computed using
a small random subset (a “minibatch”) of the training data.

Using a model with a small number of parameters (as traditionally done in
statistics and some ML methods) has advantages for interpretability and
computation. It can also help avoid overfitting, where the chosen predictor
may fit the data set so closely it ends up fitting noise and fails to ade-
quately capture the underlying data-generating process. Deep learning is
different in that often there are enough parameters to allow overfitting.
What is surprising is that often neural nets generalize well (i.e,. don’t over-
fit) even though they could in principle (this is an enormous subject, see,
e.g., [BHMM19]).

5. SIMPLE EXAMPLES FROM PURE MATHEMATICS

It is important to keep in mind that the main motivating applications for deep
learning research are very different from those arising in pure mathematics. For
example, the “recognize a hand-written digit” function considered in the previous
two sections is rather different to the Riemann zeta functionf™d

This means that the mathematician wanting to use machine learning should keep
in mind that they are using tools designed for a very different purpose. The hype
that “neural nets can learn anything” also doesn’t help. The following rules of
thumb are useful to keep in mind when selecting a problem for deep learning:

(1)

Noise stable. Functions involved in image and speech recognition motivated
much research in machine learning. These functions typically have very
high-dimensional input (e.g., R109%100 for a square 100 x 100 grayscale
image) and are noise stable. For example, we can usually recognise an
image or understand speech after the introduction of a lot of noise. Neural
nets typically do poorly on functions which are very noise-sensitive [
High dimensional. If one thinks of a neural network as a function approx-
imator, it is a function approximator that comes into its own on high-
dimensional input. These are the settings in which traditional techniques
like Fourier series break down due to the curse of dimensionality. Deep
learning should be considered when the difficulty comes from the dimen-
sionality, rather than from the inherent complexity of the function.

Unit cube. Returning to our (unreliable) analogy with biological neural
nets, one expects all charges occurring in the brain to belong to some fixed
small interval. The same is true of artificial neural networks: they perform
best when all real numbers encountered throughout the network from input
to output belong to some bounded interval. Deep learning packages are
often written assuming that the inputs belong to the unit cube [0, 1] C R™.

100ne should keep in mind that neural networks are universal approximators: a large enough
neural network can approximate any continuous function accurately [Wik|. However, in practice
some functions are much more easily learnt than others.

1 This point should be read with some caution. For example, evaluation of board positions in
Go is not a particularly noise-stable problem.
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(4) Details matter. Design choices like network architecture and size, initial-
ization scheme, choice of learning rate (i.e., step size of gradient descent),
choice of optimizer, etc., matter enormously. It is also important how the
inputs to the neural network are encoded as vectors in R™ (the representa-
tion) Overcoming these difficulties is best done with a collaborator who
has experience in deep learning research and implementation.

With these rules of thumb in mind we will now discuss three examples in pure
mathematics.

5.1. Learning the parity bit. Consider the parity bit function
o:{0,1}" — {0,1}

() — sz mod 2.
i=1

We might be tempted to use a neural network to try to learn a function
o~ R™ = R,

which agrees with o under the natural embedding {0,1}™ C R™.

This is a classic problem in machine learning [MP17, T §3.1]. It generalizes the
problem of learning the XOR, function (the case m = 2), which is one of the simplest
problems that cannot be learned without nonlinearities. There exist elegant neural
networks extending o to the unit cube, and given a large proportion (e.g., 50%) of
the set {0,1}™ a neural network can be trained to express ¢ [RHWS5| pp. 14-16].
However, given only a small proportion of the values of o (e.g., 10% for m = 10) a
vanilla neural network will not reliably generalize to all values of o (for experiments,
see [GGW22, ‘Playing with parity’]).

The issue here is that o is highly noise sensitive. (Indeed, o is precisely the
checksum of signal processing!) This is an important example to keep in mind,
as many simple functions in pure mathematics resemble o. For an example, see
[GGW22 Week 2] where we attempt (without much luck!) to train a neural network
to learn the Md&bius function from number theory.

5.2. Learning descent sets. Consider the symmetric group ¥, consisting of all

permutations of 1,2,...,n. Given a permutation we can consider its left and right
descent sets:
(4) Lx)={1<i<n|z'()>z"(i+1)},

)
(5) R(z) = {1 <i<n|z()>a@i+1)}

Obviously, £L(z71) = R(x) and R(z~1) = L(z). The left and right descent sets are
important invariants of a permutation.

It is interesting to see whether a neural network can be trained to learn the left
and right descent sets. In other words, we would like to train a neural network

¢~ R" - R

121t seems silly to have to write that details matter in any technical subject. However, many
people I have spoken to are under the false impression that one model works for everything, and
that training happens “out of the box” and is easy. For an excellent and honest summary by an
expert of the difficulties encountered when training large models, see [Kar19|.



10 GEORDIE WILLIAMSON

which, given the vector (z(1),z(2),...,z(n)) returns a sequence of n—1 probabilities
given whether or not 1 <1 < n belongs to the left (resp., right) descent set.

This example is interesting in that (&) implies that the right descent set can be
predicted perfectly with a single linear layer. More precisely, if we consider

v:R* - R"!
(’Ul,...,UH)F—) (Ul _U2702_v37~-~avn—1_vn)

then the ith coordinate of v evaluated on a permutation (x(1),...,xz(n)) is positive
if and only if i € R(z). On the other hand, it seems much harder to handcraft a
neural network which extracts the left descent set from (z(1),...,z(n)).

This might lead us to guess that a neural network will have a much easier time
learning the right descent set than the left descent set. This turns out to be the
case, and the difference is dramatic: a vanilla neural network with two hidden layers
of dimensions 500 and 100 learns to predict right descent sets for n = 35 with high
accuracy after a few seconds. Whereas the same network struggles to get even a sin-
gle correct answer for the left descent set, after significant training!™? It is striking
that using permutation matrices as inputs rather than the vectors (x(1),...,z(n))
gives perfect symmetry in training between left and right The issue here is the
representation: how the model receives its input can have a dramatic effect on
model performance.

5.3. Transformers and linear algebra. Our final example is much more sophis-
ticated, and illustrates how important the choice of training data can be. It also
shows how surprising the results of training large neural networks can be.

A transformer is a neural network architecture which first emerged in machine
translation [VSPT17]. We will not go into any detail about the transformer archi-
tecture here, except to say that it is well suited to tasks where the input and output
are sequences of tokens (“sequence to sequence” tasks):

z Y Z — transformer — a b c

More precisely, the input sequence (“xyz”) determines a probability distribution
over all tokens. We then sample from this distribution to obtain the first token
(“a”). Now the input and sequence sampled so far (“xyz” + “a”) provides a new
distribution over tokens, from which we sample our second token (“b”), etc.

In a recent work [Cha21] Charton trains a transformer to perform various tasks
in linear algebra: matrix transposition, matrix addition, matrix multiplication,
determination of eigenvalues, determination of eigenvectors, etc. For example, the

eigenvalue task is regarded as the “translation”:

list of eigenvalues
AL 2> A > 2> As.

real 5 X 5-symmetric matrix

M= transformer
- (m117m127m137 st 7m55>

Charton considers real symmetric matrices, all of whose entries are signed floating
point numbers with three significant figures and exponent lying between —100 and

13Decreasing n and allowing longer training suggests that the network can learn the left descent
set, but it is much harder.
4 For a colab containing all of these experiments, see [EGW22, Classifying descent sets in Sy,].
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100/ The transformer obtains impressive accuracy on most linear algebra tasks.
What is remarkable is that for the transformer the entries of the matrix (e.g., 3.14,
-27.8,0.000132, ...) are simply tokens—the transformer doesn’t “know” that 3.14
is close to 3.13, or that both are positive; it doesn’t even “know” that its tokens
represent numbers!

Another remarkable aspect of this work concerns generalization. A model trained
on Wigner matrices (e.g., entries sampled uniformly from [—10, 10]) does not gen-
eralize well at all to matrices with positive eigenvalues. On the other hand, a model
trained on matrices with eigenvalues sampled from a Laplace distribution (which
has heavy tails) does generalize to matrices whose eigenvalues are all positive, even
though it has not seen a single such matrix during training! The interested reader is
referred to Charton’s paper [Cha21l Table 12] and his lecture on YouTube [Cha22].

6. EXAMPLES FROM RESEARCH MATHEMATICS

We now turn to some examples where deep learning has been used in pure
mathematics research.

6.1. Counterexamples in combinatorics. One can dream that deep learning
might one day provide a mathematician’s “bicycle for the mind”: an easy to use
and flexible framework for exploring possibilities and potential counterexamples. (I
have certainly lost many days trying to prove a statement that turned out to be
false, with the counterexample lying just beyond my mental horizon.)

We are certainly not there yet, but the closest we have come to witnessing
such a framework is provided in the work of Adam Wagner [Wag21]. He focuses
on conjectures of the form: over all combinatorial structures X, an associated
numerical quantity Z is bounded by B. He considers situations where there is
some simple recipe for generating objects in X, and that the numerical quantity Z
is efficiently computable.

For example, a conjecture in graph theory states that for any connected graph
G on n > 3 vertices, with largest eigenvalue A\ and matching number p we have
(6) At pu—vVn—-1-1>0.

(It is not important for this discussion to know what the matching number or largest
eigenvalue are!)

Wagner fixes an enumeration ey, es, ..., of the edges E in a complete graph on n-
vertices. Graphs are generated by playing a single-player game: the player is offered
e1, e etc., and decides at each point whether to accept or reject the edge, the goal
being to minimize ([6). A move in the game is given by a 01l-vector indicating edges
that have been taken so far, together with a vector indicating which edge is under
consideration. For example, when n = 4 the pair ((1,0,1,1,0,0),(0,0,0,0,1,0))
indicates that edge number 5 is under consideration, and that edges 1, 3, and 4
have already been selected, and 2 rejected. Moves are sampled according to a neural
network

(7) p:REQRE 5 R,
which (after application of sigmoid) gives the probability that we should take the

edge under consideration.

15Charton considers various encodings of these numbers via sequences of tokens of various
lengths, see [Cha21].
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FIGURE 6.1. The evolution of graphs towards Wagner’s counterex-
ample, from [Wag21], with permission.
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Wagner then employs the cross entropy method to gradually train the neural
network. A fixed (and large) number of graphs are sampled according to the neural
network (fl). Then a fixed percentage (say, 10%) of the games resulting in the
smallest values of the LHS of (@) are used as training data to update the neural
network (7). (That is, we tweak the weights of the neural network to make decisions
that result in graphs that are as close as possible to providing a counterexample
to ().) We then repeat. This method eventually finds a counterexample to (@)
on 19 vertices. The evolution of graphs sampled from the neural network is shown
in Figure B.Inote how the neural network learns quickly that tree-like graphs do
best. Exactly the same method works to discover counterexamples to several other
conjectures in combinatorics; see [Wag21].

6.2. Conjecture generation. The combinatorial invariance conjecture is a con-
jecture in representation theory which was proposed by Lusztig and Dyer in the
early 1980s [Bre04]. To any pair of permutations z,y € X, in the symmetric
group one may associate two objects: the Bruhat graph (a directed graph); and the
Kazhdan—Lusztig polynomial (a polynomial in ¢), see Figure for an example of
both. The conjecture states that an isomorphism between Bruhat graphs implies
equality between Kazhdan—Lusztig polynomials. A more optimistic version of this
conjecture asks for a recipe which computes the Kazhdan—Lusztig polynomial from
the Bruhat graph. One interesting aspect of this conjecture is that it is (to the best
of my knowledge) a conjecture born of pure empiricism.

For the Bruhat graph, the definition is simple, but the resulting graph is com-
plicated. On the other hand, the definition of the Kazhdan—Lusztig polynomial is
complicated, however the resulting polynomial is simple. Thus, there is at least a
passing resemblance to traditional applications of machine learning, where a simple
judgement (e.g., “it’s a cat”) is made from complicated input (e.g., an array of
pixels).
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7
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FIGURE 6.2. Bruhat interval and Kazhdan—Lusztig polynomial for
the pair of permutations z = (1, 3,2,5,4,6) and y = (3,4,5,6, 1, 2)
in g, from [BBD™T22].

It is natural to use neural networks as a testing ground for this conjecture: if a
neural network can easily predict the Kazhdan—Lusztig polynomial from the Bruhat
graph, perhaps we can too! We trained a neural network to predict Kazhdan—
Lusztig polynomials from the Bruhat graph. We used a neural network architecture
known as a graph neural network, and trained the neural network to predict a
probability distribution on the coefficients of ¢, ¢2, ¢3, and ¢*[/ The neural network
was trained on = 20,000 Bruhat graphs, and achieved very high accuracy (= 98%)
after less than a day’s training. This provides reasonable evidence that there is
some way of reliably guessing the Kazhdan—Lusztig polynomial from the Bruhat
graph.

It is notoriously difficult to go from a trained neural network to some kind of
human understanding. One technique to do so is known as saliency analysis. Recall
that neural networks often learn a piecewise linear function, and hence one can
take derivatives of the learned function to try to learn which inputs have the most
influence on a given output In our example, saliency analysis provided subgraphs
of the original Bruhat graph which appeared to have remarkable “hypercube”-like
structure (see Figure and Figure 5al). After considerable work this
eventually led to a conjecture ﬂm, which would settle the combinatorial
invariance conjecture for symmetric groups if proven, and has stimulated research
on this problem from pure mathematicians [GW23L[BG23b,[BG23al[BM23].

In a parallel development, Davies, Juhasz, Lackenby, and Tomasev were able
to use saliency analysis to discover a new relationship between the signature and
hyperbolic invariants of knots [DJLT22]. The machine learning background of both
works is explained in ﬂm It would be very interesting to find further exam-
ples where saliency leads to new conjectures and theorems.

6.3. Guiding calculation. Another area where deep learning has promise to im-
pact mathematics is in the guiding of calculation. In many settings a computation

16The coefficient of ¢° is known to always equal 1. In our training sets no coefficients of ¢® or
higher occur.

17This technique is often called “vanilla gradient” in the literature. Apparently it is very brittle
in real-world applications.
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FIGURE 6.3. Bruhat interval pre- and post-saliency analysis.

can be done in many ways. Any choice will lead to a correct outcome, but choices
may drastically effect the length of the computation. It is interesting to apply deep
learning in these settings, as false steps (which deep learning models are bound to
make) effects efficiency but not accuracy.

Over the last three years there have been several examples of such applications.
In [PSHL20], the authors use a machine learning algorithm to guide selection strate-
gies in Buchberger’s algorithm, which is a central algorithm in the theory of Grébner
bases in polynomial rings. In [Sim21], Simpson uses deep neural networks to sim-
plify proofs in the classification of nilpotent semi-groups. In [HKS22], the authors
use a deep neural network to predict computation times of period matrices, and
use it to more efficiently compute the periods of certain hypersurfaces in projective
space.

6.4. Prediction. Due to limitations of space, we cannot begin to survey all the
work done in this infant subject. In particular, there has been much work (see,
e.g., BHHT21|[BCDL20]) training neural networks to predict difficult quantities in
mathematics (e.g., volumes of polytopes, line bundle cohomology, etc.).

7. CONCLUSION

The use of deep learning in pure mathematics is in its infancy. The tools of
machine learning are flexible and powerful, but need expertise and experience to
use. One should not expect things to work “out of the box”. Deep learning has
found applications in several branches of pure mathematics including combinatorics,
representation theory, topology and algebraic geometry. Applications so far support
the thesis that deep learning most usefully aids the more intuitive (“system 1”) parts
of the mathematical process: spotting patterns, deciding where counter-examples
might lie, choosing which part of a calculation to do next. However, the possibilities
do seem endless, and only time will tell.
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