AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Filtering and Prediction: A Primer
B. Fristedt, N. Jain, and N. Krylov, University of Minnesota, Minneapolis, MN
cover
SEARCH THIS BOOK:

Student Mathematical Library
2007; 252 pp; softcover
Volume: 38
ISBN-10: 0-8218-4333-8
ISBN-13: 978-0-8218-4333-8
List Price: US$40
Institutional Members: US$32
All Individuals: US$32
Order Code: STML/38
 [textbook-app-math-logo] [Add Item]

Filtering and prediction is about observing moving objects when the observations are corrupted by random errors. The main focus is then on filtering out the errors and extracting from the observations the most precise information about the object, which itself may or may not be moving in a somewhat random fashion. Next comes the prediction step where, using information about the past behavior of the object, one tries to predict its future path.

The first three chapters of the book deal with discrete probability spaces, random variables, conditioning, Markov chains, and filtering of discrete Markov chains. The next three chapters deal with the more sophisticated notions of conditioning in nondiscrete situations, filtering of continuous-space Markov chains, and of Wiener process. Filtering and prediction of stationary sequences is discussed in the last two chapters.

The authors believe that they have succeeded in presenting necessary ideas in an elementary manner without sacrificing the rigor too much. Such rigorous treatment is lacking at this level in the literature. In the past few years the material in the book was offered as a one-semester undergraduate/beginning graduate course at the University of Minnesota. Some of the many problems suggested in the text were used in homework assignments.

Request an examination or desk copy.

Readership

Undergraduate and graduate students interested in filtering and prediction for random processes.

Reviews

"The book is written in an elementary way but it is still mathematically rigorous. The book can be recommended to all students interested in stochastic models."

-- EMS Newsletter

"The book is well-written and provides a very nice basis for lecturing about this topic."

-- Zentralblatt MATH

Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia