
Preface  Preview Material  Table of Contents  Supplementary Material 
Graduate Studies in Mathematics 2009; 305 pp; hardcover Volume: 99 ISBN10: 0821846604 ISBN13: 9780821846605 List Price: US$59 Member Price: US$47.20 Order Code: GSM/99 See also: Jacobi Operators and Completely Integrable Nonlinear Lattices  Gerald Teschl Quantum Mechanics for Mathematicians  Leon A Takhtajan Quantum Field Theory: A Tourist Guide for Mathematicians  Gerald B Folland  Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but selfcontained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrödinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a selfcontained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a onesemester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for selfstudy and includes numerous exercises (many with hints). Readership Graduate students and research mathematicians interested in mathematical physics and quantum mechanics. Reviews "The book is written in a very clear and compact style. It is well suited for selfstudy and includes numerous exercises (many with hints)."  Zentralblatt MATH "The author presents this material in a very clear and detailed way and supplements it by numerous exercises. This makes the book a nice introduction to this exciting field of mathematics."  Mathematical Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 