AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Infinite Algebraic Extensions of Finite Fields
Joel V. Brawley and George E. Schnibben

Contemporary Mathematics
1989; 104 pp; softcover
Volume: 95
Reprint/Revision History:
reprinted 1992
ISBN-10: 0-8218-5101-2
ISBN-13: 978-0-8218-5101-2
List Price: US$36
Member Price: US$28.80
Order Code: CONM/95
[Add Item]

Request Permissions

Over the last several decades there has been a renewed interest in finite field theory, partly as a result of important applications in a number of diverse areas such as electronic communications, coding theory, combinatorics, designs, finite geometries, cryptography, and other portions of discrete mathematics. In addition, a number of recent books have been devoted to the subject. Despite the resurgence in interest, it is not widely known that many results concerning finite fields have natural generalizations to abritrary algebraic extensions of finite fields. The purpose of this book is to describe these generalizations.

After an introductory chapter surveying pertinent results about finite fields, the book describes the lattice structure of fields between the finite field \(GF(q)\) and its algebraic closure \(\Gamma (q)\). The authors introduce a notion, due to Steinitz, of an extended positive integer \(N\) which includes each ordinary positive integer \(n\) as a special case. With the aid of these Steinitz numbers, the algebraic extensions of \(GF(q)\) are represented by symbols of the form \(GF(q^N)\). When \(N\) is an ordinary integer \(n\), this notation agrees with the usual notation \(GF(q^n)\) for a dimension \(n\) extension of \(GF(q)\). The authors then show that many of the finite field results concerning \(GF(q^n)\) are also true for \(GF(q^N)\). One chapter is devoted to giving explicit algorithms for computing in several of the infinite fields \(GF(q^N)\) using the notion of an explicit basis for \(GF(q^N)\) over \(GF(q)\). Another chapter considers polynomials and polynomial-like functions on \(GF(q^N)\) and contains a description of several classes of permutation polynomials, including the \(q\)-polynomials and the Dickson polynomials. Also included is a brief chapter describing two of many potential applications.

Aimed at the level of a beginning graduate student or advanced undergraduate, this book could serve well as a supplementary text for a course in finite field theory.

Table of Contents

  • A survey of some finite field theory
  • Algebraic extensions of finite fields
  • Iterated presentations and explicit bases
  • Polynomials and polynomial functions
  • Two applications
Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia