AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

The Polynomial Identities and Variants of \(n \times n\) Matrices
Edward Formanek
A co-publication of the AMS and CBMS.
SEARCH THIS BOOK:

CBMS Regional Conference Series in Mathematics
1991; 55 pp; softcover
Number: 78
ISBN-10: 0-8218-0730-7
ISBN-13: 978-0-8218-0730-9
List Price: US$27
Member Price: US$21.60
All Individuals: US$21.60
Order Code: CBMS/78
[Add Item]

The theory of polynomial identities, as a well-defined field of study, began with a well-known 1948 article of Kaplansky. The field since developed along two branches: the structural, which investigates the properties of rings that satisfy a polynomial identity; and the varietal, which investigates the set of polynomials in the free ring that vanish under all specializations in a given ring.

This book is based on lectures delivered during an NSF-CBMS Regional Conference, held at DePaul University in July 1990, at which the author was the principal lecturer. The first part of the book is concerned with polynomial identity rings. The emphasis is on those parts of the theory related to \(n\times n\) matrices, including the major structure theorems and the construction of certain polynomial identities and central polynomials for \(n\times n\) matrices. The ring of generic matrices and its center is described. The author then moves on to the invariants of \(n\times n\) matrices, beginning with the first and second fundamental theorems, which are used to describe the polynomial identities satisfied by \(n\times n\) matrices.

One of the exceptional features of this book is the way it emphasizes the connection between polynomial identities and invariants of \(n\times n\) matrices. Accessible to those with background at the level of a first-year graduate course in algebra, this book gives readers an understanding of polynomial identity rings and invariant theory, as well as an indication of problems and research in these areas.

Readership

Reviews

"This monograph provides an excellent overview of the subject and can serve nonexperts as an introduction to the field and serve experts as a handy reference."

-- Mathematical Reviews

Table of Contents

  • Polynomial identity rings
  • The standard polynomial and the Amitsur-Levitzki theorem
  • Central polynomials
  • Posner's theorem and the ring of generic matrices
  • The center of the generic division ring
  • The Capelli polynomial and Artin's theorem
  • Representation theory of the symmetric and general linear groups
  • The first and second fundamental theorems of matrix invariants
  • Applications of the first and second fundamental theorems
  • The Nagata-Higman theorem and matrix invariants
Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia