AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
A (Terse) Introduction to Lebesgue Integration
John Franks, Northwestern University, Evanston, IL
cover
SEARCH THIS BOOK:

Student Mathematical Library
2009; 202 pp; softcover
Volume: 48
ISBN-10: 0-8218-4862-3
ISBN-13: 978-0-8218-4862-3
List Price: US$37
Member Price: US$29.60
Order Code: STML/48
[Add Item]
See also:

Introduction to Representation Theory - Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob and Elena Yudovina

Measure Theory and Integration - Michael E Taylor

An Introduction to Measure and Integration: Second Edition - Inder K Rana

A Modern Theory of Integration - Robert G Bartle

This book provides a student's first encounter with the concepts of measure theory and functional analysis. Its structure and content reflect the belief that difficult concepts should be introduced in their simplest and most concrete forms.

Despite the use of the word "terse" in the title, this text might also have been called A (Gentle) Introduction to Lebesgue Integration. It is terse in the sense that it treats only a subset of those concepts typically found in a substantial graduate-level analysis course. The book emphasizes the motivation of these concepts and attempts to treat them simply and concretely. In particular, little mention is made of general measures other than Lebesgue until the final chapter and attention is limited to \(R\) as opposed to \(R^n\).

After establishing the primary ideas and results, the text moves on to some applications. Chapter 6 discusses classical real and complex Fourier series for \(L^2\) functions on the interval and shows that the Fourier series of an \(L^2\) function converges in \(L^2\) to that function. Chapter 7 introduces some concepts from measurable dynamics. The Birkhoff ergodic theorem is stated without proof and results on Fourier series from Chapter 6 are used to prove that an irrational rotation of the circle is ergodic and that the squaring map on the complex numbers of modulus 1 is ergodic.

This book is suitable for an advanced undergraduate course or for the start of a graduate course. The text presupposes that the student has had a standard undergraduate course in real analysis.

Request an examination or desk copy.

Readership

Undergraduate and graduate students interested in analysis or its applications to other areas of mathematics.

Reviews

"The book is suitable for an advanced undergraduate course or for the start of a graduate course. Each chapter contains a suitable number of exercises."

-- Mathematical Reviews

Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia