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Preface

At the middle of the twentieth century, the theory of analytic functions of a
complex variable occupied an honored, even privileged, position within the canon
of core mathematics. This “particularly rich and harmonious theory," averred
Hermann Weyl, “is the showpiece of classical nineteenth century analysis."1 Lest
this be mistaken for a gentle hint that the subject was getting old-fashioned, we
should recall Weyl’s characterization just a few years earlier of Nevanlinna’s theory
of value distribution for meromorphic functions as “one of the few great mathemat-
ical events in our century."2 Leading researchers in areas far removed from function
theory seemingly vied with one another in affirming the “permanent value"3 of the
theory. Thus, Clifford Truesdell declared that “conformal maps and analytic func-
tions will stay current in our culture as long as it lasts";4 and Eugene Wigner,
referring to “the many beautiful theorems in the theory ... of power series and of
analytic functions in general," described them as the “most beautiful accomplish-
ments of [the mathematician’s] genius."5 Little wonder, then, that complex function
theory was a mainstay of the graduate curriculum, a necessary and integral part of
the common culture of all mathematicians.

Much has changed in the past half century, not all of it for the better. From
its central position in the curriculum, complex analysis has been pushed to the
margins. It is now entirely possible at some institutions to obtain a Ph.D. in
mathematics without being exposed to the basic facts of function theory, and
(incredible as it may seem) even students specializing in analysis often fulfill degree
requirements by taking only a single semester of complex analysis. This, despite
the fact that complex variables offers the analyst such indispensable tools as power
series, analytic continuation, and the Cauchy integral. Moreover, many important
results in real analysis use complex variables in their proofs. Indeed, as Painlevé
wrote already at the end of the nineteenth century, “Between two truths of the
real domain, the easiest and shortest path quite often passes through the complex

1Hermann Weyl, A half-century of mathematics, Amer. Math. Monthly 58 (1951), 523-553,
p. 526.

2Hermann Weyl, Meromorphic Functions and Analytic Curves, Princeton University Press,
1943, p. 8.

3G. Kreisel, On the kind of data needed for a theory of proofs, Logic Colloquium 76, North
Holland, 1977, pp. 111-128, p. 118.

4C. Truesdell, Six Lectures on Modern Natural Philosophy, Springer-Verlag, 1966, p. 107.
5Eugene P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,

Comm. Pure Appl. Math. 13 (1960), 1-14, p. 3.
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domain,"6 a claim endorsed and popularized by Hadamard.7 Our aim in this little
book is to illustrate this thesis by bringing together in one volume a variety of
mathematical results whose formulations lie outside complex analysis but whose
proofs employ the theory of analytic functions. The most famous such example
is, of course, the Prime Number Theorem; but, as we show, there are many other
examples as well, some of them basic results.

For whom, then, is this book intended? First of all, for everyone who loves
analysis and enjoys reading pretty proofs. The technical level is relatively
modest. We assume familiarity with basic functional analysis and some elementary
facts about the Fourier transform, as presented, for instance, in the first author’s
Functional Analysis (Wiley-Interscience, 2002), referred to henceforth as [FA]. In
those few instances where we have made use of results not generally covered in
the standard first course in complex variables, we have stated them carefully and
proved them in appendices. Thus the material should be accessible to graduate
students. A second audience consists of instructors of complex variable courses
interested in enriching their lectures with examples which use the theory to solve
problems drawn from outside the field.

Here is a brief summary of the material covered in this volume. We begin with
a short account of how complex variables yields quick and efficient solutions of two
problems which were of great interest in the seventeenth and eighteenth centuries,
viz., the evaluation of

∑∞
1 1/n2 and related sums and the proof that every algebraic

equation in a single variable (with real or even complex coefficients) is solvable in
the field of complex numbers. Next, we discuss two representative applications of
complex analysis to approximation theory in the real domain: weighted polynomial
approximation on the line and uniform approximation on the unit interval by linear
combinations of the functions {xnk}, where nk → ∞ (Müntz’s Theorem). We then
turn to applications of complex variables to operator theory and harmonic analysis.
These chapters form the heart of the book. A first application to operator theory
is Rosenblum’s elegant proof of the Fuglede-Putnam Theorem. We then discuss
Toeplitz operators and their inversion, Beurling’s characterization of the invari-
ant subspaces of the unilateral shift on the Hardy space H2 and the consequent
divisibility theory for the algebra B of bounded analytic functions on the disk or
half-plane, and a celebrated problem in prediction theory (Szegő’s Theorem). We
also prove the Riesz-Thorin Convexity Theorem and use it to deduce the bound-
edness of the Hilbert transform on Lp(R), 1 < p < ∞. The chapter on applications
to harmonic analysis begins with D.J. Newman’s striking proof of Fourier unique-
ness via complex variables; continues on to a discussion of a curious functional equa-
tion and questions of uniqueness (and nonuniqueness) for the Radon transform; and
then turns to the Paley-Wiener Theorem, which together with the divisibility the-
ory for B referred to above is exploited to provide a simple proof of the Titchmarsh
Convolution Theorem. This chapter concludes with Hardy’s Theorem, which quan-
tifies the fact that a function and its Fourier transform cannot both tend to zero

6“Entre deux vérités du domain réel, le chemin le plus facile et le plus court passe bien
souvent par le domaine complexe." Paul Painlevé, Analyse des travaux scientifiques, Gauthier-
Villars, 1900, pp.1-2.

7“It has been written that the shortest and best way between two truths of the real domain
often passes through the imaginary one." Jacques Hadamard, An Essay on the Psychology of
Invention in the Mathematical Field, Princeton University Press, 1945, p. 123.
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too rapidly. The final chapters are devoted to the Gleason-Kahane-Żelazko Theo-
rem (in a unital Banach algebra, a subspace of codimension 1 which contains no
invertible elements is a maximal ideal) and the Fatou-Julia-Baker Theorem (the
Julia set of a rational function of degree at least 2 or a nonlinear entire function is
the closure of the repelling periodic points). We end on a high note, with a proof
of the Prime Number Theorem. A coda deals very briefly with two unusual appli-
cations: one to fluid dynamics (the design of shockless airfoils for partly supersonic
flows), and the other to statistical mechanics (the stochastic Loewner evolution).

To a certain extent, the choice of topics is canonical; but, inevitably, it has
also been influenced by our own research interests. Some of the material has been
adapted from [FA]. Our title echoes that of a paper by the second author.8

Although this book has been in the planning stages for some time, the actual
writing was done during the Spring and Summer of 2010, while the second author
was on sabbatical from Bar-Ilan University. He thanks the Courant Institute of
Mathematical Sciences of New York University for its hospitality during part of this
period and acknowledges the support of Israel Science Foundation Grant 395/07.

Finally, it is a pleasure to acknowledge valuable input from a number of friends
and colleagues. Charles Horowitz read the initial draft and made many useful com-
ments. David Armitage, Walter Bergweiler, Alex Eremenko, Aimo Hinkkanen, and
Tony O’Farrell all offered perceptive remarks and helpful advice on subsequent ver-
sions. Special thanks to Miriam Beller for her expert preparation of the manuscript.

Peter D. Lax Lawrence Zalcman
New York, NY Jerusalem, Israel

8Lawrence Zalcman, Real proofs of complex theorems (and vice versa), Amer. Math. Monthly
81 (1974), 115-137.
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