Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings

About this Title

Frederick W. Gehring, Gaven J. Martin, Massey University, Auckland, New Zealand and Bruce P. Palka, National Science Foundation, Arlington, VA

Publication: Mathematical Surveys and Monographs
Publication Year: 2017; Volume 216
ISBNs: 978-0-8218-4360-4 (print); 978-1-4704-4046-6 (online)
DOI: https://doi.org/10.1090/surv/216
MathSciNet review: MR3642872
MSC: Primary 30-02; Secondary 30C62, 30C65

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • S. Agard, A geometric proof of Mostow’s rigidity theorem for groups of divergence type, Acta Math., 151, (1983), 231–252.
  • L.V. Ahlfors, Zur theorie der Überlagerungsflächen, Acta Math., 65, (1935), 157–194.
  • L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton 1966; Reprinted by Wadsworth Inc. Belmont, 1987.
  • L.V. Ahlfors, Commentary on: “Zur theorie der Überlagerungsflächen” (1935), Fields Medallists’ Lectures, 8–9, World Sci. Ser. 20th Century Math., 5, World Sci. Publishing, River Edge, NJ, 1997.
  • L.V. Ahlfors, On quasiconformal mappings, J. d’Analyse Math., 3, (1953/54), 1–58. (correction loc. cit., pp. 207–208).
  • L.V. Ahlfors, Extension of quasiconformal mappings from two to three dimensions, Proc. Nat. Acad. Sci. U.S.A., 51, (1964), 768–771.
  • L.V. Ahlfors, Quasiconformal reflections, Acta Math., 109, (1963), 291–301.
  • L.V. Ahlfors, Conformal invariants. Topics in geometric function theory. Reprint of the 1973 original. With a foreword by Peter Duren, F. W. Gehring and Brad Osgood. AMS Chelsea Publishing, Providence, RI, 2010.
  • L.V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. ii+150 pp.
  • L.V. Ahlfors and A. Beurling, Conformal invariants and function theoretic null sets, Acta Math., 83, (1950), 101–129.
  • L.V. Ahlfors and A. Beurling, The boundary correspondence under quasiconformal mappings, Acta Math., 96, (1956), 125–142.
  • G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. xxviii+505 pp.
  • C. Andreian Cazacu, Foundations of quasiconformal mappings, Handbook of complex analysis: Geometric Function Theory, Vol. 2, 687–753, Elsevier, Amsterdam, 2005.
  • M. Arsenovic̈, V. Manojlović, and R. Näkki, Boundary modulus of continuity and quasiconformal mappings, Ann. Acad. Sci. Fenn. Math., 37, (2012), 107–118.
  • K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press, Princeton, NJ, 2009. xviii+677 pp.
  • A.F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1983. xii+337 pp.
  • A.F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math., 132, (1974), 1–12.
  • B.A. Bhayo and M. Vuorinen, On Mori’s theorem for quasiconformal mappings in $n$-space, Trans. Amer. Math. Soc., 363, (2011), no. 11, 5703–5719.
  • B. Bojarski and T. Iwaniec, Another approach to Liouville Theorem, Math. Nachr., 107, (1982), 253–262.
  • P. Bonfert-Taylor, R. Canary, G.J. Martin, and E.C. Taylor, Quasiconformal homogeneity of hyperbolic manifolds, Math. Ann., 331, (2005), 281–295.
  • P. Bonfert-Taylor, R. Canary, and E.C. Taylor, Quasiconformal homogeneity after Gehring and Palka, Comput. Methods Funct. Theory, 14, (2014), 417–430.
  • M. Bonk, B. Kleiner and S. Merenkov, Rigidity of sets, Amer. J. Math., 131, (2009), 409–443.
  • M. Bonk, Uniformization of Sierpiński carpets in the plane, Invent. Math., 186, (2011), 559–665.
  • A. Borel, André Weil and algebraic topology, André Weil (1906–1998). Gaz. Math., 80, (1999), 63–74.
  • M. Brown, A proof of the generalised Schoenflies theorem, Bull. Amer. Math. Soc., 66, (1960), 74–76.
  • D. Bump, Lie groups, second edition. Graduate Texts in Mathematics, 225, Springer, New York, 2013.
  • D.E. Callender, Hölder continuity of $n$-dimensional quasiconformal mappings, Pacific J. Math., 10, (1960), 499–515.
  • L. Carleson, The extension problem for quasiconformal mappings, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 39–47. Academic Press, New York, 1974.
  • J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40, (1936), 396–414.
  • A. Connes, D. Sullivan, and N. Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology, 33, (1994), 663–681.
  • A. Connes, D. Sullivan, and N. Teleman, Formules locales pour les classes de Pontrjagin topologiques, C. R. Acad. Sci. Paris Sr. I Math., 317, (1993), 521–526.
  • E. de Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3, (1957), 25–43.
  • S.K. Donaldson and D. P. Sullivan, Quasiconformal $4$-manifolds, Acta Math., 163, (1989), 181–252.
  • A. Douady and C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math., 157, (1986), 23–48.
  • R.D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings, Ann. Math., 93, (1971), 63–88.
  • V.A. Efremovich and E.S. Tihomirova, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk SSSR Ser. Mat., 28, (1964), 1139–1144.
  • H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153 Springer-Verlag New York Inc., New York, 1969, xiv+676 pp.
  • R. Finn and J. Serrin, On the Hölder continuity of quasi-conformal and elliptic mappings, Trans. Amer. Math. Soc., 89, (1958), 1–15.
  • R.H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Annals of Math., 49, (1948), 979–990.
  • K.O. Friedrichs, On Clarkson’s inequalities, Communications on Pure and Applied Math., 23, (1970), 603–607.
  • V.N. Dubinin, Condenser capacities and symmetrisation in geometric function theory, translated from the Russian by N.G. Kruzhilin, Springer, Basel, 2014.
  • B. Fuglede, Extremal length and functional completion, Acta Math., 98, (1957), 171–219.
  • D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math., 136, (1992), 447–510.
  • D.B. Gauld and M.K. Vamanamurthy, Quasiconformal extensions of mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math., 3, (1977), 229–246.
  • D.B. Gauld and M.K. Vamanamurthy, A special case of Schönflies’ theorem for quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math., 3, (1977), 311–316.
  • F.W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103, (1962), 353–393.
  • F.W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130, (1973), 265–277.
  • F.W. Gehring, Quasiconformal mappings in Euclidean spaces, Handbook of complex analysis: Geometric Function Theory, Vol 2, 1–29, Elselvier, Amsterdam, 2005.
  • F.W. Gehring and T. Iwaniec, The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. Math., 24, (1999), 253–264.
  • F.W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. A I, 272, (1959), 9pp.
  • F.W. Gehring and G. J. Martin, Discrete quasiconformal groups, I, Proc. London Math. Soc., 55, (1987), 331–358.
  • F.W. Gehring and B.P. Palka, Quasiconformally homogeneous domains, J. Analyse Math., 30, (1976), 172–199.
  • F.W. Gehring and B. Osgood, Uniform domains and the quasi-hyperbolic metric, Journal d’Analyse Mathématique, 36, (1979), 50–74.
  • F.W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math., 114, (1965), 1–70.
  • M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems, Annals of Math. Stud., 105, Princeton University Press, 1983.
  • M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math., 148, (1982), 31–46.
  • E. Ghys and P. de La Harpe, Infinite groups as geometric objects (after Gromov), Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), 299–314, Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.
  • E. Ghys and P. de La Harpe, Quasi-isométries et quasi-géodésiques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), 79–102, Progr. Math., 83, Birkhäuser Boston, Boston, MA, 1990.
  • J. D. Gray and S. A. Morris, When is a Function that Satisfies the Cauchy-Riemann Equations Analytic? American Math. Monthly, 85, (1978), 246 –256
  • L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand., 10, (1962), 85–107.
  • M.J. Greenberg, J.R. Harper, Algebraic topology. A first course, Mathematics Lecture Note Series, 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. xi+311 pp.
  • M. Gromov, Hyperbolic groups, Essays in group theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.
  • M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recent developments (Montecatini Terme, 1990), 39–137, Lecture Notes in Math., 1504, Springer, Berlin, 1991.
  • W. Gross, Über das Fläshenmass von Punktmengen, Monat. Math. Physik, 29, (1918), 145–176.
  • W. Gross, Über das lineare Mass von Punktmengen, Monat. Math. Physik, 29, (1918), 177–193.
  • H. Grötzsch, Über die Verzerrung bei schlichten nichtconformen Abbildungen und übereine damit zusammenhängende Erweiterung des Picardschen Satzes, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 80, (1928), 503–507.
  • P. Gruber, Convex Geometry, Grundlehren der Mathematischen Wissenschaften, Springer Verlag, 2007.
  • W.K. Hayman, Symmetrization in the theory of functions, Tech. Rep. no. 11, Navy Contract N6-ori-106 Task Order 5, Stanford University, Calif., 1950. 38 pp.
  • W.K. Hayman, Multivalent functions, second edition. Cambridge Tracts in Mathematics, 110, Cambridge University Press, Cambridge, 1994. xii+263 pp
  • G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1952.
  • P. Hartman On isometries and on a theorem of Liouville, Math. Z., 69, (1958), 202–210.
  • G.A. Hedlund, Fuchsian groups and transitive horocycles , Duke Math. J., 2, (1936), 530–542.
  • J. Heinonen, Lectures on Lipschitz Analysis, Report., University of Jyväskylä Department of Mathematics and Statistics, 100, University of Jyväskylä, Jyväskylä, 2005.
  • J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, 1993.
  • J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math., 120, (1995), 61–79.
  • J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, (1998), 1–61.
  • J. Hesse, $p$-extremal length and $p$-measurable curve families, Proc. Amer. Math. Soc., 53, (1975), 356–360.
  • J. Hesse, A $p$-extremal length and $p$-capacity equality, Ark. Mat., 13, (1975), 131–144.
  • E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc., 3, (1952), 791–793.
  • E. Hopf and N. Wiener, Über eine Klasse singulärer Integralgleichungen, Sitzungber. Akad. Wiss. Berlin, (1931), pp. 696–706
  • H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Annalen, 95, (1926), 313–339.
  • T. Iwaniec, p-Harmonic tensors and quasiregular mappings, Ann. of Math., 136, (1992), 589–624.
  • T. Iwaniec, The failure of lower semicontinuity for the linear dilatation, Bull. London Math. Soc., 30, (1998), 55–61.
  • T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001. xvi+552. ISBN: 0-19-850929-4
  • T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math., 170, (1993), 29–81.
  • T. Iwaniec and J. Onninen, $n$-harmonic mappings between annuli: the art of integrating free Lagrangians, Mem. Amer. Math. Soc., 218, (2012), no. 1023, viii+105 pp. ISBN: 978-0-8218-5357-3
  • T. Iwaniec and J. Onninen, An invitation to n-harmonic hyperelasticity, Pure Appl. Math. Q., 7, (2011), Special Issue: In honor of Frederick W. Gehring, Part 2, 319–343.
  • D.S. Jerison and C.E. Kenig, Hardy spaces, $A_\infty$ and singular integrals on chord-arc domains, Math. Scand., 50, (1982), 221–247.
  • F. John, Rotation and strain, Comm. Pure Appl. Math., 14, (1961), 391–413.
  • W. Killing, Über die Clifford-Klein’schen Raumformen, Math. Annalen, 39, (1891), 257–278.
  • B.N. Kimel’fe’ld, Homogeneous regions on the conformal sphere, Mat. Zametki, 8, (1970), 321–328.
  • R.C. Kirby and L.C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations. With notes by John Milnor and Michael Atiyah. Annals of Mathematics Studies, 88. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977.
  • R. Kühnau, Bibliography of geometric function theory, Handbook of complex analysis: Geometric Function Theory, Vol. 2, 809–828, Elsevier, Amsterdam, 2005.
  • T. Kuusalo, Quasiconformal mappings without boundary extensions, Ann. Acad. Sci. Fenn. Ser. A I Math., 10, (1985), 331– 338.
  • S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, New York, 1999.
  • T.G. Latfullin, Geometric characterisation of the quasi-isometric image of a half plane, Theory of mappings, its generalizations and applications, 116–126, “Naukova Dumka”, Kiev, 1982.
  • O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Springer–Verlag, 1973.
  • J. Lindenstrauss and D. Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Annals of Math., 157, (2003), 257–288.
  • J. Liouville, Extension au cas de trois dimensions de la question du tracé géographique, Note IV in Application de l’Anallyse à la Géometrie, Bachelier, Paris, 1850, 609–616.
  • J. Liouville, Théorèm sur l’équation $dx^2+dy^2+dz^2=\lambda (d\alpha ^2+d\beta ^2+d\gamma ^2)$, J. Math. Pures Appl., 1, (15), (1850), 103.
  • J. Lützen, Joseph Liouville 1809–1882: master of pure and applied mathematics, Studies in the History of Mathematics and Physical Sciences, 15, Springer-Verlag, New York, 1990. xx+884 pp.
  • J. Luukkainen, Lipschitz and quasiconformal approximation of homeomorphism pairs, Topology Appl., 109, (2001), 1–40.
  • J. Malý, A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math., 17, (1999), 59–61.
  • G.J. Martin, Infinite group actions on spheres, Revista Mat. Iberoamericana, 4, No. 3–4 (1988), 407–451.
  • G.J. Martin, Algebraic convergence of discrete isometry groups of negative curvature, Pacific J. Math., 160, (1992), 109–127.
  • G.J. Martin, The Hilbert-Smith conjecture for quasiconformal actions, Electron. Res. Announc. Amer. Math. Soc., 5, (1999), 66–70.
  • G.J. Martin and R. Skora, Group actions on $\IS ^{2}$, Amer. J. Math., 111, (1989), 387–402.
  • P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. xii+343 pp.
  • O. Martio, S. Rickman, and J. Väisälä, Definitions for Quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A.I., 448, (1969), 1-40.
  • O. Martio, S. Rickman, and J. Väisälä, Distortion and Singularities of Quasiregular Mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 465, (1970), 1–13.
  • O. Martio, S. Rickman, and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 488, (1971), 1–31.
  • O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math., 4, (1979), 383–401.
  • M. Mateljevicá, Isoperimetric Inequality, F. Gehring’s Problem on Linked Curves and Capacity, Filomat, 29, (3), (2015), 629–650.
  • V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften 342, Springer, Heidelberg, 2011. xxviii+866 pp.
  • M. J. McKemie, Quasiconformal groups with small dilatation, Ann. Acad. Sci. Fenn. Ser. A I Math., 12, (1987), 95–118.
  • E. E. Moise, Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics, 47, Springer-Verlag, New York-Heidelberg, 1977. x+262 pp.
  • G. Monge Application de l’Anallyse à la Géometrie, Bachelier, Paris, 1850.
  • P. Montel, Sur les suites infinies de fonctions, Gauthier-Villars, Paris, 1907.
  • D. Montgomery and L. Zippin, Topological transformation groups, Reprint of the 1955 original. Robert E. Krieger Publishing Co., Huntington, N.Y., 1974. xi+289 pp.
  • A. Mori An absolute constant in the theory of quasiconformal mappings, J. Math. Soc. Japan, 8, (1956), 156–166.
  • A. Mori On quasiconformality and pseudo-analyticity, Trans. Amer. Math. Soc., 84, (1957), 56–77.
  • C.B. Morrey, Multiple integrals in the calculus of variations, Springer–Verlag, 1966.
  • J. Moser, On Harnack’s theorem for elliptic differential equations, Communications on Pure and Applied Mathematics, 14, (1961), 577–591.
  • J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I & II, Ann. Scuola Norm. Sup. Pisa, 20, (1966), 265–315, Ann. Scuola Norm. Sup. Pisa, 20, (1966), 499–535.
  • G.D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math., 34, (1968), 53–104.
  • D. Mumford, C. Series and D. Wright, Indra’s pearls, Cambridge University Press, 2002.
  • J.R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. xvi+413 pp.
  • R. Näkki, Cluster sets and quasiconformal mappings, Complex Var. Elliptic Equ., 55, (2010), 31–47.
  • R. Näkki and O. Martio, Boundary accessibility of a domain quasiconformally equivalent to a ball, Bull. London Math. Soc., 36, (2004), 115–118.
  • R. Näkki and B.P. Palka, Lipschitz conditions and quasiconformal mappings, Indiana Univ. Math. J., 31, (1982), 377–401.
  • R. Näkki and B.P. Palka, Swiss cheese, dendrites, and quasiconformal homogeneity, Comput. Methods Funct. Theory, 14, (2014), 525–539.
  • G. Narasimhan, Complex analysis in one variable, Birkhäuser Boston, Inc., Boston, MA, 1985. xvi+266 pp.
  • R. Nevanlinna On differentiable mappings, Analytic functions, pp. 3–9, Princeton Univ. Press, Princeton, N.J., 1960.
  • R. Nevanlinna Die konformen Selbstabbildungen des euklidischen Raumes, Rev. Fac. Sci. Univ. Istanbul. Sér. A., 19, (1954), 133–139.
  • M. Ohtsuka, Extremal length and precise functions. With a preface by Fumi-Yuki Maeda. GAKUTO International Series. Mathematical Sciences and Applications, 19. Gakkotosho Co., Ltd., Tokyo, 2003.
  • G. Prasad, Strong rigidity of Q-rank $1$ lattices, Invent. Math., 21, (1973), 255–286.
  • M.S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer-Verlag, New York-Heidelberg, 1972. ix+227 pp
  • J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag, New York, 1994. xii+747 pp.
  • R. Remmert and L. Kay, Classical Topics in Complex Function Theory, Springer-Verlag, 1998.
  • Yu. G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Zh., 8, (1967), 629–659.
  • Yu. G. Reshetnyak, Liouville’s Theorem on conformal mappings under minimal regularity assumptions, Sibirsk. Mat. Zh., 8, (1967), 835–840.
  • W. Rudin, Real and Complex Analysis, (third ed.), McGraw-Hill, 1986.
  • J. Sarvas, Symmetrization of condensers in $n$-space, Ann. Acad. Sci. Fenn. Ser., A I, 522, (1972), 44 pp.
  • A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960), pp. 147–164. Tata Institute of Fundamental Research, Bombay.
  • J. L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993.
  • V.A. Shlyk, $K$-capacity and the Rado problem for mappings with bounded distortion, Sibirsk. Mat. Zh., 31, (1990), 179–186, 222; translation in Siberian Math. J., 31, (1990), 152–158.
  • V.A. Shlyk, On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh., 34, (1993), 216–221; translation in Siberian Math. J., 34, (1993), 1196–1200.
  • R.J. Spatzier, Harmonic Analysis in Rigidity Theory, in Petersen, Karl E.; Salama, Ibrahim A., Ergodic Theory and its Connection with Harmonic Analysis, Proceedings of the 1993 Alexandria Conference, Cambridge University Press, (1995), 153–205,
  • Stallings, Group theory and three-dimensional manifolds, A James K. Whittemore Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 4, Yale University Press, New Haven, Conn.-London, 1971. v+65 pp.
  • D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (proceedings Georgia Topology Conf., Athens, Ga., 1977) edited by J. C. Cantrell, Academic Press, New York, N. Y.-London, 1979, 543–555.
  • C.H. Taubes, Differential geometry. Bundles, connections, metrics and curvature, Oxford Graduate Texts in Mathematics, 23, Oxford University Press, Oxford, 2011. xiv+298 pp
  • W.P. Thurston Three-dimensional geometry and topology, Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997. x+311 pp.
  • P. Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Scie. Fenn. Ser. A. I. Math., 6, (1981), 89–94.
  • P. Tukia, The planar Schönfliess theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math., 5, 1980, 49–72.
  • P. Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Études Sci. Publ. Math., 61, (1985), 171–214.
  • P. Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math., 6, (1981), 149–160.
  • P. Tukia and J. Väisälä, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math., 6, (1981), 303–342.
  • P. Tukia and J. Väisälä, Quasiconformal extension from dimension $n$ to $n+1$, Ann. of Math., 115, (1982), 331–348.
  • P. Tukia and J. Väisälä, Bi-Lipschitz extensions of maps having quasiconformal extensions, Math. Ann., 269, (1984), 561–572.
  • J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, 1971.
  • J. Väisälä, On quasiconformal mappings of a ball, Ann. Acad. Sci. Fenn. Ser. A I, 304, (1961), 7 pp.
  • J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I, 298, (1961), 36 pp.
  • J. Väisälä, Homeomorphisms of bounded length distortion, Ann. Acad. Sci. Fenn. Ser. A I Math., 12, (1987), 303–312.
  • J. Väisälä, Quasiconformal maps of cylindrical domains, Acta Math., 162, (1989), 201–225.
  • M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, 1319, Springer-Verlag, Berlin, 1988. xx+209 pp.
  • A. Weil, On discrete subgroups of Lie groups, Annals of Math., 72, (1960), 369–384.
  • A. Weil, On discrete subgroups of Lie groups. II, Annals of Math., 75, (1962), 578–602.
  • G.T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications 28, American Mathematical Society, Providence, R.I., 1942.
  • J. Wolf, Spaces of Constant Curvature, Third edition. Publish or Perish, Inc., Boston, Mass., 1974. xv+408 pp.
  • W.P. Ziemer, Extremal length and $p$-capacity, Michigan Math. J., 16, (1969), 43–51.
  • V.A. Zorich, The theorem of M.A. Lavrent’ev on quasiconformal mappings in space, Mat. Sb., 74, (1967), 417–433.
  • V.A. Zorich, Homeomorphity of space quasiconformal mappings (Russian) Dokl. Acad. Nauk. SSSR, 176, (1967), 31–34; (English) Sov. Math. Dokl. 8, (1967), 1039–1042.