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Preface

Cluster algebras introduced by Fomin and Zelevinsky in [FZ2] are commu-
tative rings with unit and no zero divisors equipped with a distinguished family
of generators (cluster variables) grouped in overlapping subsets (clusters) of the
same cardinality (the rank of the cluster algebra) connected by exchange relations.
Among these algebras one finds coordinate rings of many algebraic varieties that
play a prominent role in representation theory, invariant theory, the study of total
positivity, etc. For instance, homogeneous coordinate rings of Grassmannians, coor-
dinate rings of simply-connected connected semisimple groups, Schubert varieties,
and other related varieties carry (possibly after a small adjustment) a cluster alge-
bra structure. A prototypic example of exchange relations is given by the famous
Plücker relations, and precursors of the cluster algebra theory one can observe in
the Ptolemy theorem expressing product of diagonals of inscribed quadrilateral in
terms of side lengths and in the Gauss formulae describing Pentagrama Myrificum.

Cluster algebras were introduced in an attempt to create an algebraic and
combinatorial framework for the study dual canonical bases and total positivity in
semisimple groups. The notion of canonical bases introduced by Lusztig for quan-
tized enveloping algebras plays an important role in the representation theory of
such algebras. One of the approaches to the description of canonical bases uti-
lizes dual objects called dual canonical bases. Namely, elements of the enveloping
algebra are considered as differential operators on the space of functions on the
corresponding group. Therefore, the space of functions is considered as the dual
object, whereas the pairing between a differential operator D and a function F is
defined in the standard way as the value of DF at the unity. Elements of dual
canonical bases possess special positivity properties. For instance, they are regular
positive-valued functions on the so-called totally positive subvarieties in reductive
Lie groups, first studied by Lusztig. In the case of GLn the notion of total posi-
tivity coincides with the classical one, first introduced by Gantmakher and Krein:
a matrix is totally positive if all of its minors are positive. Certain finite collec-
tions of elements of dual canonical bases form distinguished coordinate charts on
totally positive varieties. The positivity property of the elements of dual canonical
bases and explicit expressions for these collections and transformations between
them were among the sources of inspiration for designing cluster algebra transfor-
mation mechanism. Transitions between distinguished charts can be accomplished
via sequences of relatively simple positivity preserving transformations that served
as a model for an abstract definition of a cluster transformation. Cluster alge-
bra transformations construct new distinguished elements of the cluster algebra
from the initial collection of elements. In many concrete situations all constructed
distinguished elements have certain stronger positivity properties called Laurent

ix
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positivity. It is still an open question whether Laurent positivity holds for all dis-
tinguished elements for an arbitrary cluster algebra. All Laurent positive elements
of a cluster algebra form a cone. Conjecturally, for cluster algebras arising from
reductive semisimple Lie groups extremal rays of this cone form a basis closely
connected to the dual canonical basis mentioned above.

Since then, the theory of cluster algebras has witnessed a spectacular growth,
first and foremost due to the many links that have been discovered with a wide
range of subjects including

• representation theory of quivers and finite-dimensional algebras and cat-
egorification;

• discrete dynamical systems based on rational recurrences, in particular,
Y -systems in the thermodynamic Bethe Ansatz;

• Teichmüller and higher Teichmüller spaces;
• combinatorics and the study of combinatorial polyhedra, such as the
Stasheff associahedron and its generalizations;

• commutative and non-commutative algebraic geometry, in particular,
– Grassmannians, projective configurations and their tropical analogues,
– the study of stability conditions in the sense of Bridgeland,
– Calabi-Yau algebras,
– Donaldson-Thomas invariants,
– moduli space of (stable) quiver representations.

In this book, however, we deal only with one aspect of the cluster algebra the-
ory: its relations to Poisson geometry and theory of integrable systems. First of all,
we show that the cluster algebra structure, which is purely algebraic in its nature,
is closely related to certain Poisson (or, dually, pre-symplectic) structures. In the
cases of double Bruhat cells and Grassmannians discussed below, the corresponding
families of Poisson structures include, among others, standard R-matrix Poisson-
Lie structures (or their push-forwards). A large part of the book is devoted to the
interplay between cluster structures and Poisson/pre-symplectic structures. This
leads, in particular, to revealing of cluster structure related to integrable systems
called Toda lattices and to dynamical interpretation of cluster transformations, see
the last chapter. Vice versa, Poisson/pre-symplectic structures turned out to be
instrumental for the proof of purely algebraic results in the general theory of cluster
algebras.

In Chapter 1 we introduce necessary notions and notation. Section 1.1 provides
a very concise introduction to flag varieties, Grassmannians and Plücker coordi-
nates. Section 1.2 treats simple Lie algebras and groups. Here we remind to the
reader the standard objects and constructions used in Lie theory, including the
adjoint action, the Killing form, Cartan subalgebras, root systems, and Dynkin dia-
grams. We discuss in some detail Bruhat decompositions of a simple Lie group, and
double Bruhat cells , which feature prominently in the next Chapter. Poisson–Lie
groups are introduced in Section 1.3. We start with providing basic definitions of
Poisson geometry, and proceed to define main objects in Poisson–Lie theory, in-
cluding the classical R-matrix. Sklyanin brackets are then defined as a particular
example of an R-matrix Poisson bracket. Finally, we treat in some detail the case
of the standard Poisson–Lie structure on a simple Lie group, which will play an
important role in subsequent chapters.
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Chapter 2 considers in detail two basic sources of cluster-like structures in rings
of functions related to Schubert varieties: the homogeneous coordinate ring of the
Grassmannian G2(m) of 2-dimensional planes and the ring of regular functions on
a double Bruhat cell. The first of the two rings is studied in Section 2.1. We show
that Plücker coordinates of G2(m) can be organized into a finite number of groups
of the same cardinality (clusters), covering the set of all Plücker coordinates. Every
cluster corresponds to a triangulation of a convex m-gon. The system of clusters
has a natural graph structure, so that adjacent clusters differ exactly by two Plücker
coordinates corresponding to a pair of crossing diagonals (and contained together
in exactly one short Plücker relation). Moreover, this graph is a 1-skeleton of the
Stasheff polytope of m-gon triangulations. We proceed to show that if one fixes
an arbitrary cluster, any other Plücker coordinate can be expressed as a rational
function in the Plücker coordinates entering this cluster. We prove that this rational
function is a Laurent polynomial and find a geometric meaning for its numerator
and denominator, see Proposition 2.1.

Section 2.2 starts with the formulation of Arnold’s problem: find the number of
connected components in the variety of real complete flags intersecting transversally
a given pair of flags. We reformulate this problem as a problem of enumerating con-
nected components in the intersection of two real open Schubert cells, and proceed
to a more general problem of enumerating connected components of a real double
Bruhat cell. It is proved that components in question are in a bijection with the
orbits of a group generated by symplectic transvections in a vector space over the
field F2, see Theorem 2.10. As one of the main ingredients of the proof, we provide
a complete description of the ring of regular functions on the double Bruhat cell.
It turns out that generators of this ring can be grouped into clusters, and that they
satisfy Plücker-type exchange relations.

In Chapter 3 we introduce cluster algebras and prove two fundamental results
about them. Section 3.1 contains basic definitions and examples. In this book we
mainly concentrate on cluster algebras of geometric type, so the discussion in this
Section is restricted to such algebras, and the case of general coefficients is only
mentioned in Remark 3.13. We define basic notions of cluster and stable variables,
seeds, exchange relations, exchange matrices and their mutations, exchange graphs,
and provide extensive examples. The famous Laurent phenomenon is treated in Sec-
tion 3.2. We prove both the general statement (Theorem 3.14) and its sharpening
for cluster algebras of geometric type (Proposition 3.20). The second fundamental
result, the classification of cluster algebras of finite type, is discussed in Section 3.3.
We state the result (Theorem 3.26) as an equivalence of three conditions, and
provide complete proofs for two of the three implications. The third implication is
discussed only briefly, since a complete proof would require exploring intricate com-
binatorial properties of root systems for different Cartan–Killing types, which goes
beyond the scope of this book. In Section 3.4 we discuss relations between cluster
algebras and rings of regular functions, see Proposition 3.37. Finally, Section 3.5
contains a list of conjectures, some of which are treated in subsequent chapters.

Chapter 4 is central to the book. In Section 4.1 we introduce the notion of
Poisson brackets compatible with a cluster algebra structure and provide a complete
characterization of such brackets for cluster algebras with the extended exchange
matrix of full rank, see Theorem 4.5. In this context, mutations of the exchange
matrix are explained as transformations of the coefficient matrix of the compatible
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Poisson bracket induced by a basis change. In Section 4.2 we apply this result to
the study of Poisson and cluster algebra structures on Grassmannians. Starting
from the Sklyanin bracket on SLn, we define the corresponding Poisson bracket
on the open Schubert cell in the Grassmannian Gk(n) and construct the cluster
algebra compatible with this Poisson bracket. It turns out that this cluster algebra
is isomorphic to the ring of regular functions on the open cell in Gk(n), see Theo-
rem 4.14. We further investigate this construction and prove that an extension of
the obtained cluster algebra is isomorphic to the homogeneous coordinate ring of
the Grassmannian, see Theorem 4.17.

The smooth part of the spectrum of a cluster algebra is called the cluster
manifold and is treated in Chapter 5. The definition of the cluster manifold is
discussed in Section 5.1. In Section 5.2 we investigate the natural Poisson toric
action on the cluster manifold and provide necessary and sufficient conditions for
the extendability of the local toric action to the global one, see Lemma 5.3. We
proceed to the enumeration of connected components of the regular locus of the toric
action in Section 5.3 and extend Theorem 2.10 to this situation, see Theorem 5.9. In
Section 5.4 we study the structure of the regular locus and prove that it is foliated
into disjoint union of generic symplectic leaves of the compatible Poisson bracket,
see Theorem 5.12. In Section 5.5 we apply these results to the enumeration of
connected components in the intersection of n Schubert cells in general position in
Gk(n), see Theorem 5.15.

Note that compatible Poisson brackets are defined in Chapter 4 only for clus-
ter algebras with the extended exchange matrix of a full rank. To overcome this
restriction, we present in Chapter 6 a dual approach based on pre-symplectic rather
than on Poisson structures. In Section 6.1 we define closed 2-forms compatible with
a cluster algebra structure and provide a complete characterization of such forms
parallel to Theorem 4.5, see Theorem 6.2. Further, we define the secondary cluster
manifold and a compatible symplectic form on it, which we call the Weil–Petersson
form associated to the cluster algebra. The reason for such a name is explained
in Section 6.2, which treats our main example, the Teichmüller space. We briefly
discuss Penner coordinates on the decorated Teichmüller space defined by fixing
a triangulation of a Riemann surface Σ, and observing that Ptolemy relations for
these coordinates can be considered as exchange relations. The secondary cluster
manifold for the cluster algebra A(Σ) arising in this way is the Teichmüller space,
and the Weil–Petersson form associated with this cluster algebra coincides with the
classical Weil–Petersson form corresponding to Σ, see Theorem 6.6. We proceed
with providing a geometric meaning for the degrees of variables in the denominators
of Laurent polynomials expressing arbitrary cluster variables in terms of the initial
cluster, see Theorem 6.7; Proposition 2.1 can be considered as a toy version of this
result. Finally, we give a geometric description of A(Σ) in terms of triangulation
equipped with a spin, see Theorem 6.9. In Section 6.3 we derive an axiomatic ap-
proach to exchange relations. We show that the class of transformations satisfying
a number of natural conditions, including the compatibility with a closed 2-form,
is very restricted, and that exchange transformations used in cluster algebras are
simplest representatives of this class, see Theorem 6.11.

In Chapter 7 we apply the results of previous chapters to prove several conjec-
tures about exchange graphs of cluster algebras listed in Section 3.5. The depen-
dence of a general cluster algebra on the coefficients is investigated in Section 7.1.
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We prove that the exchange graph of the cluster algebra with principal coefficients
covers the exchange graph of any other cluster algebra with the same exchange
matrix, see Theorem 7.1. In Section 7.2 we consider vertices and edges of an
exchange graph and prove that distinct seeds have distinct clusters for cluster al-
gebras of geometric type and for cluster algebras with arbitrary coefficients and
a non-degenerate exchange matrix, see Theorem 7.4. Besides, we prove that if a
cluster algebra has the above cluster-defines-seed property, then adjacent vertices
of its exchange graph are clusters that differ only in one variable, see Theorem 7.5.
Finally, in Section 7.3 we prove that the exchange graph of a cluster algebra with a
non-degenerate exchange matrix does not depend on coefficients, see Theorem 7.7.

In the remaining three chapters we develop an approach to the interaction of
Poisson and cluster structures based on the study of perfect networks—directed
networks on surfaces with boundary having trivalent interior vertices and univalent
boundary vertices. Perfect planar networks in the disk are treated in Chapter 8.
Main definitions, including weights and boundary measurements, are given in Sec-
tion 8.1. We prove that each boundary measurement is a rational function of the
edge weights, see Proposition 8.3, and define the boundary measurement map from
the space of edge weights of the network to the space of k ×m matrices, where k
and m are the numbers of sources and sinks. Section 8.2 is central to this chapter;
it treats Poisson structures on the space of edge weights of the network and Poisson
structures on the space of k ×m matrices induced by the boundary measurement
map. The former are defined axiomatically as satisfying certain natural conditions,
including an analog of the Poisson–Lie property for groups. It is proved that such
structures form a 6-parametric family, see Proposition 8.5. For fixed sets of sources
and sinks, the induced Poisson structures on the space of k ×m matrices form a
2-parametric family that does not depend on the internal structure of the network,
see Theorem 8.6. Explicit expressions for this 2-parametric family are provided
in Theorem 8.7. In case k = m and separated sources and sinks, we recover on
k×k matrices the Sklyanin bracket corresponding to a 2-parametric family of clas-
sical R-matrices including the standard R-matrix, see Theorem 8.10. In Section 8.3
we extend the boundary measurement map to the Grassmannian Gk(k + m) and
prove that the obtained Grassmannian boundary measurement map induces a 2-
parametric family of Poisson structures on Gk(k+m) that does not depend on the
particular choice of k sources and m sinks; moreover, for any such choice, the fam-
ily of Poisson structures on k ×m matrices representing the corresponding cell of
Gk(k+m) coincides with the family described in Theorem 8.7 (see Theorem 8.12 for
details). Next, we give an interpretation of the natural GLk+m action on Gk(k+m)
in terms of networks and establish that every member of the above 2-parametric
family of Poisson structures on Gk(k + m) makes it into a Poisson homogeneous
space of GLk+m equipped with the Sklyanin R-matrix bracket, see Theorem 8.17.
Finally, in Section 8.4 we prove that each bracket in this family is compatible with
the cluster algebra constructed in Chapter 4, see Theorem 8.20. An important
ingredient of the proof is the use of face weights instead of edge weights.

In Chapter 9 we extend the constructions of the previous chapter to perfect
networks in an annulus. Section 9.1.1 is parallel to Section 8.1; the main difference
is that in order to define boundary measurements we have to introduce an auxiliary
parameter λ that counts intersections of paths in the network with a cut whose end-
points belong to distinct boundary circles. We prove that boundary measurements
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are rational functions in the edge weights and λ, see Corollary 9.3 and study how
they depend on the choice of the cut. Besides, we provide a cohomological descrip-
tion of the space of face and trail weights, which is a higher analog of the space
of edge weights used in the previous chapter. Poisson properties of the obtained
boundary measurement map from the space of edge weights to the space of rational
k × m matrix functions in one variable are treated in Section 9.2. We prove an
analog of Theorem 8.6, saying that for fixed sets of sources and sinks, the induced
Poisson structures on the space of matrix functions form a 2-parametric family
that does not depend on the internal structure of the network, see Theorem 9.4.
Explicit expressions for this family are much more complicated than those for the
disk, see Proposition 9.6. The proof itself differs substantially from the proof of
Theorem 8.6. It relies on the fact that any rational k×m matrix function belongs
to the image of the boundary measurement map for an appropriated perfect net-
work, see Theorem 9.10. The section is concluded with Theorem 9.15 claiming that
for a specific choice of sinks and sources one can recover the Sklyanin bracket cor-
responding to the trigonometric R-matrix. In Section 9.3 we extend these results
to the Grassmannian boundary measurement map from the space of edge weights
to the space of Grassmannian loops. We define the path reversal map and prove
that this map commutes with the Grassmannian boundary measurement map, see
Theorem 9.17. Further, we prove Theorem 9.22, which is a natural extension of
Theorem 8.12; once again, the proof is very different and is based on path reversal
techniques and the use of face weights.

In the concluding Chapter 10 we apply techniques developed in the previous
chapter to providing a cluster interpretation of generalized Bäcklund–Darboux trans-
formations for Coxeter–Toda lattices. Section 10.1 gives an overview of the chapter
and contains brief introductory information on Toda lattices, Weyl functions of the
corresponding Lax operators and generalized Bäcklund–Darboux transformations
between phase spaces of different lattices preserving the Weyl function. A Coxeter
double Bruhat cell in GLn is defined by a pair of Coxeter elements in the symmetric
group Sn. In Section 10.2 we have collected and proved all the necessary technical
facts about such cells and the representation of their elements via perfect networks
in a disk. Section 10.3 treats the inverse problem of restoring factorization param-
eters of an element of a Coxeter double Bruhat cell from its Weyl function. We
provide an explicit solution for this problem involving Hankel determinants in the
coefficients of the Laurent expansion for the Weyl function, see Theorem 10.9. In
Section 10.4 we build and investigate a cluster algebra on a certain space Rn of
rational functions related to the space of Weyl functions corresponding to Coxeter
double Bruhat cells. We start from defining a perfect network in an annulus corre-
sponding to the network in a disk studied in Section 10.2. The space of face weights
of this network is equipped with a particular Poisson bracket from the family stud-
ied in Chapter 9. We proceed by using results of Chapter 4 to build a cluster algebra
of rank 2n − 2 compatible with this Poisson bracket. Theorem 10.27 claims that
this cluster algebra does not depend on the choice of the pair of Coxeter elements,
and that the ring of regular functions on Rn is isomorphic to the localization of this
cluster algebra with respect to the stable variables. In Section 10.5 we use these re-
sults to characterize generalized Bäcklund–Darboux transformations as sequences of
cluster transformations in the above cluster algebra conjugated by by a certain map
defined by the solution of the inverse problem in Section 10.3, see Theorem 10.36.
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We also show how one can interpret generalized Bäcklund–Darboux transforma-
tions via equivalent transformations of the corresponding perfect networks in an
annulus. In conclusion, we explain that classical Darboux transformations can be
also interpreted via cluster transformations, see Proposition 10.39.

The process of writing spread over several years. We would like to thank all
individuals and institutions that supported us in this undertaking. The project
was started in Summer 2005 during our visit to Mathematisches Forschunginstitut
Oberwolfach in the framework of Research in Pairs program. Since then we con-
tinued to work on the book during our joint visits to Institut des Hautes Etudes
Scientifiques (Bures-sur-Yvette), Institut Mittag-Leffler (Djursholm), Max-Planck-
Institut fur Mathematik (Bonn), University of Stockholm, Royal School of Tech-
nology (Stockholm), University of Haifa, Michigan State University, and University
of Michigan. We thank all these institutions for warm hospitality and excellent
working conditions. During the process of writing, we had numerous discussions
with A. Berenstein, L. Chekhov, V. Fock, S. Fomin, R. Kulkarni, A. Postnikov,
N. Reshetikhin, J. Scott, B. Shapiro, M. Yakimov, A. Zelevinsky and others that
helped us to understand many different facets of cluster algebras. It is our pleasure
to thank all of them for their help.
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Bäcklund–Darboux transformation
(generalized), 201, 231

Borel

subalgebra, 5

subalgebra opposite, 5

Boundary measurement, 144, 179

map, 146, 179

Grassmannian, 160, 192

matrix, 146, 179

Bruhat

cell, 6

double, 6, 26

double Coxeter, 200

double reduced, 6, 26

opposite, 6

decomposition, 6

Cartan

companion, 50

matrix, 4, 49

Casimir element, 8, 107

Chevalley generators, 4

Cluster, 16, 37

adjacent, 37

algebra

coefficient-free, 41

compatible with a Poisson structure,
73

general, 43

of finite type, 49

of geometric type, 39

restriction of, 43

upper, 35, 47

with principal coefficients, 133

extended, 16, 37

manifold, 102

secondary, 113

monomial, 63

variable, 37

Cobracket, 10

1-cocycle condition, 9

Coefficient

group, 37

matrix

of a Poisson structure, 67

of a pre-symplectic structure, 111

Compatibility, 127

Concordance number, 143

Conjugate

horocycles, 115

segments, 122

Coxeter element, 200

Coxeter–Toda lattice, 200

Critical tree, 56

Cut, 175

base point of, 175

Cycle, 143

simple, 143

Cyclically dense, 16

Darboux transformation, 234

Diagram

cycle-like, 54

mutation, 53

of a mutation matrix, 52

tree-like, 54

Differential

left-invariant, 9

right-invariant, 9

Direct sum of networks, 187

Directed dual network, 167

Dynkin

diagram, 4

graph, 53

Edge weight, 142

modified, 176

Elementary reflection, 5

Exchange

graph, 40

243



244 INDEX

matrix, 37

extended, 37
relation, 38

Face, 166, 181
bounded, 166, 181

unbounded, 166, 181
weight, 166, 181

Factorization parameters, 7
Flag

standard, 2

variety, 2
complete, 2

generalized, 6
Flip, 116

spun, 125
Freezing (of variables), 43

Gauge
group, 180

transformation
global, 150
local, 150

Gauss factorization, 6
Generalized minor, 6

Graph E6-compatible, 106
Grassmannian, 1

Ground ring, 39

Hamiltonian vector field, 8

Horocycle, 115

Ideal

arcs, 115
compatible, 115

triangle, 115
triangulation, 115

nice, 116
perfect, 116

Index

i-bounded, 28
i-exchangeable, 62

Induced subgraph, 54
Intersection number (modified geometric),

120

spun, 127
Sn-invariance, 127
Involutivity, 127

Jacobi

identity, 8
matrix, 199

Killing form, 3

Lattice

Coxeter–Toda, 200
open Volterra, 230

relativistic Toda, 231
Toda, 200

Laurent phenomenon, 44

Lax equation, 199, 228

Leibniz identity, 8
Lie bialgebra, 10

factorizable, 10

Lie-Poisson bracket, 9

Locality, 127
Log-canonical basis

with respect to Poisson structure, 67

with respect to pre-symplectic structure,
111

Loop erasure, 166

Markov

equation, 42

triple, 42

Matrix
Cartan, 49

2-finite, 50

irreducible, 71, 112
Jacobi, 199

mutation, 38

quasi-Cartan, 49

reducible, 71, 112
sign-skew-symmetric, 37

totally, 38

sign-symmetric, 4
skew-symmetric, 37

skew-symmetrizable, 37

D-skew-symmetrizable, 37

Moment, 207
functional, 207

Moser map, 200

Mutation equivalent

matrices, 38
seeds, 39

Noose, 125

Normalization condition, 43

Orthant, 28

Path, 143
reversal, 192

map, 192

weight, 143
Penner coordinates, 116

Perfect planar network

in a disk, 142

in an annulus, 176
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Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings 
with unit and no zero divisors equipped with a distinguished family of generators 
(cluster variables) grouped in overlapping subsets (clusters) of the same cardinality 
(the rank of the cluster algebra) connected by exchange relations. Examples of cluster 
algebras include coordinate rings of many algebraic varieties that play a prominent 
role in representation theory, invariant theory, the study of total positivity, etc. The 
theory of cluster algebras has witnessed a spectacular growth, first and foremost due 
to the many links to a wide range of subjects including representation theory, discrete 
dynamical systems, Teichmüller theory, and commutative and non-commutative alge-
braic geometry.

This book is the first devoted to cluster algebras. After presenting the necessary 
introductory material about Poisson geometry and Schubert varieties in the first two 
chapters, the authors introduce cluster algebras and prove their main properties in 
Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. 
In the remaining chapters, the emphasis is made on geometric aspects of the cluster 
algebra theory, in particular on its relations to Poisson geometry and to the theory of 
integrable systems.
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