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Preface

This book is a revised and expanded version of the authors’ manuscript
“Analysis and Dynamics on the Berkovich Projective Line” ([91], July 2004).
Its purpose is to develop the foundations of potential theory and rational
dynamics on the Berkovich projective line.

The theory developed here has applications in arithmetic geometry,
arithmetic intersection theory, and arithmetic dynamics. In an effort to
create a reference which is as useful as possible, we work over an arbitrary
complete and algebraically closed non-Archimedean field. We also state our
global applications over an arbitrary product formula field whenever pos-
sible. Recent work has shown that such generality is essential, even when
addressing classical problems over C. As examples, we note the first au-
thor’s proof of a Northcott-type finiteness theorem for the dynamical height
attached to a nonisotrivial rational function of degree at least 2 over a func-
tion field [5] and his joint work with Laura DeMarco [6] on finiteness results
for preperiodic points of complex dynamical systems.

We first give a detailed description of the topological structure of the
Berkovich projective line. We then introduce the Hsia kernel, the fundamen-
tal kernel for potential theory (closely related to the Gromov kernel of [47]).
Next we define a Laplacian operator on P1

Berk and construct theories of capac-
ities, harmonic functions, and subharmonic functions, all strikingly similar
to their classical counterparts over C. We develop a theory of multiplici-
ties for rational maps and give applications to non-Archimedean dynamics,
including the construction of a canonical invariant probability measure on
P1

Berk analogous to the well-known measure on P1(C) constructed by Lyu-
bich and by Freire, Lopes, and Mañé. Finally, we investigate Berkovich space
analogues of the classical Fatou-Julia theory for rational iteration over C.

In §7.8, we give an updated treatment (in the special case of P1) of
the Fekete and Fekete-Szegö theorems from [88], replacing the somewhat
esoteric notion of “algebraic capacitability” with the simple notion of com-
pactness. In §7.9, working over an arbitrary product formula field, we prove
a generalization of Bilu’s equidistribution theorem [24] for algebraic points
which are ‘small’ with respect to the height function attached to a compact
Berkovich adelic set. In §10.3, again working over a product formula field,
we prove an adelic equidistribution theorem for algebraic points which are
‘small’ with respect to the dynamical height attached to a rational function
of degree at least 2, extending results in [9], [35], and [47].

ix
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A more detailed overview of the results in this book can be found in the
first author’s lecture notes from the 2007 Arizona Winter School [4], and in
the Introduction below.

History

This book began as a set of lecture notes from a seminar on the Berkovich
projective line held at the University of Georgia during the spring of 2004.
The purpose of the seminar was to develop the tools needed to prove an
adelic equidistribution theorem for small points with respect to the dynam-
ical height attached to a rational function of degree d ≥ 2 defined over a
number field (Theorem 10.24). Establishing such a theorem had been one
of the main goals in our 2002 NSF proposal DMS-0300784.

In [8], the first author and Liang-Chung Hsia had proved an adelic
equidistribution theorem for points of P1(Q) having small dynamical height
with respect to the iteration of a polynomial map. Two basic problems re-
mained after that work. First, there was the issue of generalizing the main
results of [8] to rational functions, rather than just polynomials. It occurs
frequently in complex dynamics and potential theory that one needs heav-
ier machinery to deal with rational maps than with polynomials. Second,
because the filled Julia set in P1(Cp) of a polynomial over Cp is often non-
compact, the authors of [8] were unable to formulate their result as a true
“equidistribution” theorem. Instead, they introduced a somewhat artificial
notion of “pseudo-equidistribution” and showed that when the filled Julia
set is compact, then pseudo-equidistribution coincides with equidistribution.

The second author, upon learning of the results in [8], suggested that
Berkovich’s theory might allow those results to be formulated more cleanly.
Several years earlier, in [36], he had proposed that Berkovich spaces would
be a natural setting for non-Archimedean potential theory.

We thus set out to generalize the results of [8] to a true equidistribution
theorem on P1

Berk, valid for arbitrary rational maps. An important step in
this plan was to establish the existence of a canonical invariant measure
on P1

Berk attached to a rational function of degree at least 2 defined over
Cp, having properties analogous to those of the canonical measure in com-
plex dynamics (see [54, 72]). It was clear that even defining the canonical
measure would require significant foundational work.

At roughly the same time, Antoine Chambert-Loir posted a paper to
the arXiv preprint server proving (among other things) non-Archimedean
Berkovich space analogues of Bilu’s equidistribution theorem and the Szpiro-
Ullmo-Zhang equidistribution theorem for abelian varieties with good re-
duction. In the summer of 2003, the first author met with Chambert-Loir
in Paris and learned that Chambert-Loir’s student Amaury Thuillier had
recently defined a Laplacian operator on Berkovich curves. Not knowing
exactly what Thuillier had proved, nor when his results might be publicly
available, we undertook to develop a measure-valued Laplacian and a theory
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of subharmonic functions on P1
Berk ourselves, with a view toward applying

them in a dynamical setting. The previous year, we had studied Laplacians
and their spectral theory on metrized graphs, and that work made it plau-
sible that a Laplacian operator could be constructed on P1

Berk by taking an
inverse limit of graph Laplacians.

The project succeeded, and we presented our equidistribution theorem
at the conference on Arithmetical Dynamical Systems held at CUNY in May
2004. To our surprise, Chambert-Loir, Thuillier, and Pascal Autissier had
proved the same theorem using an approach based on Arakelov theory. At
the same conference, Rob Benedetto pointed us to the work of Juan Rivera-
Letelier, who had independently rediscovered the Berkovich projective line
and used it to carry out a deep study of non-Archimedean dynamics. Soon
after, we learned that Charles Favre and Rivera-Letelier had independently
proved the equidistribution theorem as well.

The realization that three different groups of researchers had been work-
ing on similar ideas slowed our plans to develop the theory further. However,
over time it became evident that each of the approaches had merit: for ex-
ample, our proof brought out connections with arithmetic capacities; the
proof of Chambert-Loir, Thuillier, and Autissier was later generalized to
higher dimensions; and Favre and Rivera-Letelier’s proof yielded explicit
quantitative error bounds. Ultimately, we, at least, have benefitted greatly
from the others’ perspectives.

Thus, while this book began as a research monograph, we now view it
mainly as an expository work whose goal is to give a systematic presentation
of foundational results in potential theory and dynamics on P1

Berk. Although
the approach to potential theory given here is our own, it has overlaps with
the theory developed by Thuillier for curves of arbitrary genus. Many of the
results in the final two chapters on the dynamics of rational functions were
originally discovered by Rivera-Letelier, though some of our proofs are new.

Related works

Amaury Thuillier, in his doctoral thesis [94], established the founda-
tions of potential theory for Berkovich curves of arbitrary genus. Thuillier
constructs a Laplacian operator and theories of harmonic and subharmonic
functions and gives applications of his work to Arakelov intersection theory.
Thuillier’s work has great generality and scope, but it is written in a sophis-
ticated language and assumes a considerable amount of machinery. Because
this book is written in a more elementary language and deals only with P1,
it may be a more accessible introduction to the subject for some readers.

Juan Rivera-Letelier, in his doctoral thesis [81] and subsequent papers
[82, 83, 84, 80], has carried out a profound study of the dynamics of rational
maps on the Berkovich projective line (though his papers are written in a
rather different terminology). Section 10.9 contains an exposition of Rivera-
Letelier’s work.
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Using Rivera-Letelier’s ideas, we have simplified and generalized our dis-
cussion of multiplicities in Chapter 9 and have greatly extended our original
results on the dynamics of rational maps in Chapter 10. It should be noted
that Rivera-Letelier’s proofs are written with Cp as the ground field. One of
the goals of this book is to establish a reference for parts of his theory which
hold over an arbitrary complete and algebraically closed non-Archimedean
field.

Charles Favre and Mattias Jonsson [45] have developed a Laplacian op-
erator, and parts of potential theory, in the general context of R-trees. Their
definition of the Laplacian, while ultimately yielding the same operator on
P1

Berk, has a rather different flavor from ours. As noted above, Chambert-Loir
[35] and Favre and Rivera-Letelier [46, 47] have given independent proofs
of the adelic dynamical equidistribution theorem, as well as constructions
of the canonical measure on P1

Berk attached to a rational function. Recently
Favre and Rivera-Letelier [48] have investigated ergodic theory for rational
maps on P1

Berk. In Section 10.4, we prove a special case of their theorem on
the convergence of pullback measures to the canonical measure, which we
use as the basis for our development of Fatou-Julia theory.
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Differences from the preliminary version

There are several differences between the present manuscript and the
preliminary version [91] posted to the arXiv preprint server in July 2004.
For one thing, we have corrected a number of errors in the earlier version.

In addition, we have revised all of the statements and proofs so that
they hold over an arbitrary complete, algebraically closed field K endowed
with a nontrivial non-Archimedean absolute value, rather than just over the
field Cp. The main difference is that the Berkovich projective line over Cp

is metrizable and has countable branching at every point, whereas in general
the Berkovich projective line over K is nonmetrizable and has uncountable
branching. Replacing Cp by K throughout required a significant reworking
of many of our original proofs, since [91] relies in several places on arguments
valid for metric spaces but not for an arbitrary compact Hausdorff space.
Consequently, the present book makes more demands on the reader in terms
of topological prerequisites; for example we now make use of nets rather than
sequences in several places.

In some sense, this works against the concrete and “elementary” expo-
sition that we have striven for. However, the changes seem desirable for at
least two reasons. First, some proofs become more natural once the crutch of
metrizability is removed. Second, and perhaps more importantly, the theory
for more general fields is needed for many applications. The first author’s
paper [5] is one example of this: it contains a Northcott-type theorem for
dynamical canonical heights over a general field k endowed with a product
formula; the theorem is proved by working locally at each place v on the
Berkovich projective line over Cv (the smallest complete and algebraically
closed field containing k and possessing an absolute value extending the
given one | |v on k). As another example, Kontsevich and Soibelman [68]
have recently used Berkovich’s theory over fields such as the completion of
an algebraic closure of C((T )) to study homological mirror symmetry. We
mention also the work of Favre and Jonsson [45] on the valuative tree, as
well as the related work of Jan Kiwi [66], both of which have applications
to complex dynamics.

Here is a summary of the main differences between this work and [91]:

• We have added a detailed Introduction summarizing the work.
• We have added several appendices in order to make the presentation
more self-contained.
• We have added a symbol table and an index 
bibliography.
• We give a different construction of P1

Berk (analogous to the “Proj”
construction in algebraic geometry) which makes it easier to un-
derstand the action of a rational function.
• We have changed some of our notation and terminology to be com-
patible with that of the authors mentioned above.

 and updated the
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• We have added sections on the Dirichlet pairing and Favre–Rivera-
Letelier smoothing.
• We compare our Laplacian with those of Favre, Jonsson, and Rivera-
Letelier, and of Thuillier.
• We have included a discussion of R-trees, and in particular of P1

Berk

as a “profinite R-tree”.
• We have expanded our discussion of the Poisson formula on P1

Berk.
• We have added a section on Thuillier’s short exact sequence de-
scribing subharmonic functions in terms of harmonic functions and
positive σ-finite measures.
• We have added a section on Hartogs’s lemma, a key ingredient in
the work of Favre and Rivera-Letelier.
• We state and prove Berkovich space versions of Bilu’s equidistri-
bution theorem, the dynamical equidistribution theorem for small
points, and the arithmetic Fekete-Szegö theorem for P1.
• We have simplified and expanded the discussion in Chapter 9 on
analytic multiplicities.
• We have greatly expanded the material on dynamics of rational
maps, incorporating the work of Rivera-Letelier and the joint work
of Favre and Rivera-Letelier, and including a section on examples.



Introduction

This book has several goals. The first goal is to develop the foundations
of potential theory on P1

Berk, including the definition of a measure-valued
Laplacian operator, capacity theory, and a theory of harmonic and subhar-
monic functions. A second goal is to give applications of potential theory on
P1

Berk, especially to the dynamics of rational maps defined over an arbitrary
complete and algebraically closed non-Archimedean field K. A third goal is
to provide the reader with a concrete introduction to Berkovich’s theory of
analytic spaces by focusing on the special case of the Berkovich projective
line.

We now outline the contents of the book.

The Berkovich affine and projective lines. Let K be an alge-
braically closed field which is complete with respect to a nontrivial non-
Archimedean absolute value. The topology on K induced by the given
absolute value is Hausdorff, but it is also totally disconnected and not lo-
cally compact. This makes it difficult to define a good notion of an analytic
function on K. Tate dealt with this problem by developing the subject now
known as rigid analysis, in which one works with a certain Grothendieck
topology on K. This leads to a satisfactory theory of analytic functions,
but since the underlying topological space is unchanged, difficulties remain
for other applications. For example, using only the topology on K, there
is no evident way to define a Laplacian operator analogous to the classical
Laplacian on C or to work sensibly with probability measures on K.

However, these difficulties, and many more, can be resolved in a very
satisfactory way using Berkovich’s theory. The Berkovich affine line A1

Berk

overK is a locally compact, Hausdorff, and path-connected topological space
which contains K (with the topology induced by the given absolute value)
as a dense subspace. One obtains the Berkovich projective line P1

Berk by
adjoining to A1

Berk in a suitable manner a point at infinity; the resulting
space P1

Berk is a compact, Hausdorff, path-connected topological space which
contains P1(K) (with its natural topology) as a dense subspace. In fact,
A1

Berk and P1
Berk are more than just path-connected: they are uniquely path-

connected, in the sense that any two distinct points can be joined by a unique
arc. The unique path-connectedness is closely related to the fact that A1

Berk

and P1
Berk are endowed with a natural tree structure. (More specifically, they

are R-trees, as defined in §1.4.) The tree structure on A1
Berk (resp. P

1
Berk) can

xv
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be used to define a Laplacian operator in terms of the classical Laplacian on
a finite graph. This in turn leads to a theory of harmonic and subharmonic
functions which closely parallels the classical theory over C.

The definition of A1
Berk is quite simple and makes sense with K replaced

by an arbitrary field k endowed with a (possibly Archimedean or even trivial)
absolute value. As a set, A1

Berk,k consists of all multiplicative seminorms on

the polynomial ring k[T ] which extend the usual absolute value on k. (A
multiplicative seminorm on a ring A is a function [ ]x : A → R≥0 satisfying
[0]x = 0, [1]x = 1, [fg]x = [f ]x ·[g]x, and [f+g]x ≤ [f ]x+[g]x for all f, g ∈ A.)
By an aesthetically desirable abuse of notation, we will identify seminorms
[ ]x with points x ∈ A1

Berk,k, and we will usually omit explicit reference to

the field k, writing simply A1
Berk. The topology on A1

Berk,k is the weakest one

for which x �→ [f ]x is continuous for every f ∈ k[T ].
To motivate this definition, we observe that in the classical setting, every

multiplicative seminorm on C[T ] which extends the usual absolute value on
C is of the form f �→ |f(z)| for some z ∈ C. (This can be deduced from
the well-known Gelfand-Mazur theorem from functional analysis.) It is then
easy to see that A1

Berk,C is homeomorphic to C itself and also to the Gelfand

spectrum (i.e., the space of all maximal ideals) of C[T ].
In the non-Archimedean world, K can once again be identified with the

Gelfand space of maximal ideals in K[T ], but now there are many more
multiplicative seminorms on K[T ] than just the ones given by evaluation
at a point of K. The prototypical example arises by fixing a closed disc
D(a, r) = {z ∈ K : |z − a| ≤ r} in K and defining [ ]D(a,r) by

[f ]D(a,r) = sup
z∈D(a,r)

|f(z)| .

It is an elementary consequence of Gauss’s lemma that [ ]D(a,r) is multiplica-
tive, and the other axioms for a seminorm are trivially satisfied. Thus each
disc D(a, r) gives rise to a point of A1

Berk. Note that this includes discs for
which r �∈ |K×|, i.e., “irrational discs” for which the set {z ∈ K : |z − a| =
r} is empty. We may consider the point a as a “degenerate” disc of radius
zero. (If r > 0, then [ ]D(a,r) is not only a seminorm, but a norm.) It is
not hard to see that distinct discs D(a, r) with r ≥ 0 give rise to distinct
multiplicative seminorms on K[T ], and therefore the set of all such discs
embeds naturally into A1

Berk.
Suppose x, x′ ∈ A1

Berk are distinct points corresponding to the (possibly
degenerate) discs D(a, r), D(a′, r′), respectively. The unique path in A1

Berk

between x and x′ has a very intuitive description. If D(a, r) ⊂ D(a′, r′), it
consists of all points of A1

Berk corresponding to discs containing D(a, r) and
contained in D(a′, r′). The set of all such “intermediate discs” is totally
ordered by containment, and if a = a′, it is just {D(a, t) : r ≤ t ≤ r′}. If
D(a, r) and D(a′, r′) are disjoint, the unique path between x and x′ consists
of all points of A1

Berk corresponding to discs which are either of the form
D(a, t) with r ≤ t ≤ |a − a′| or of the form D(a′, t) with r′ ≤ t ≤ |a − a′|.
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The disc D(a, |a− a′|) = D(a′, |a− a′|) is the smallest one containing both
D(a, r) and D(a′, r′), and if x ∨ x′ denotes the point of A1

Berk corresponding
to D(a, |a− a′|), then the path from x to x′ is just the path from x to x∨x′
followed by the path from x ∨ x′ to x′.

In particular, if a, a′ are distinct points of K, one can visualize the path
in A1

Berk from a to a′ as follows: increase the “radius” of the degenerate disc
D(a, 0) until a disc D(a, r) is reached which also contains a′. This disc can
also be written as D(a′, s) with s = |a−a′|. Now decrease s until the radius
reaches zero. This “connects” the totally disconnected space K by adding
points corresponding to closed discs in K. In order to obtain a compact
space, however, it is necessary in general to add even more points, for K may
not be spherically complete (this happens, e.g., when K = Cp): there may
be decreasing sequences of closed discs with empty intersection. Intuitively,
we need to add in points corresponding to such sequences in order to obtain
a space which has a chance of being compact. More precisely, returning to
the definition of A1

Berk in terms of multiplicative seminorms, if {D(ai, ri)} is
any decreasing nested sequence of closed discs, then the map

f �→ lim
i→∞

[f ]D(ai,ri)

defines a multiplicative seminorm on K[T ] extending the usual absolute
value on K. One can show that two sequences of discs with empty intersec-
tion define the same seminorm if and only if the sequences are cofinal. This
yields a large number of additional points of A1

Berk. According to Berkovich’s
classification theorem, we have now described all the points of A1

Berk: each
point x ∈ A1

Berk corresponds to a decreasing nested sequence {D(ai, ri)}
of closed discs, and we can categorize the points of A1

Berk into four types
according to the nature of D =

⋂
D(ai, ri):

(I) D is a point of K.
(II) D is a closed disc with radius belonging to |K×|.
(III) D is a closed disc with radius not belonging to |K×|.
(IV) D = ∅.

As a set, P1
Berk can be obtained from A1

Berk by adding a type I point denoted
∞. The topology on P1

Berk is that of the one-point compactification.
Following Rivera-Letelier, we writeHBerk for the subset of P1

Berk consisting
of all points of type II, III, or IV (Berkovich “hyperbolic space”). Note that
HBerk consists of precisely the points in P1

Berk for which [ ]x is a norm. We

also write HQ
Berk for the set of type II points and HR

Berk for the set of points
of type II or III.

The description of points of A1
Berk in terms of closed discs is very useful,

because it allows one to visualize quite concretely the abstract space of mul-
tiplicative seminorms which we started with. It also allows us to understand
in a more concrete way the natural partial order on A1

Berk in which x ≤ y
if and only if [f ]x ≤ [f ]y for all f ∈ K[T ]. In terms of discs, if x, y are
points of type I, II, or III, one can show that x ≤ y if and only if the disc
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Figure 0.1. The Berkovich Projective Line

corresponding to x is contained in the disc corresponding to y. (We leave it
as an exercise to the reader to extend this description of the partial order
to points of type IV.) For any pair of points x, y ∈ A1

Berk, there is a unique
least upper bound x ∨ y ∈ A1

Berk with respect to this partial order. We can
extend the partial order to P1

Berk by declaring that x ≤ ∞ for all x ∈ A1
Berk.

Writing

[x, x′] = {z ∈ P1
Berk : x ≤ z ≤ x′} ∪ {z ∈ P1

Berk : x′ ≤ z ≤ x} ,
it is easy to see that the unique path between x, y ∈ P1

Berk is just

[x, x ∨ y] ∪ [x ∨ y, y] .

There is a canonical metric ρ on HBerk which is of great importance for
potential theory. To define it, we first define a function diam : A1

Berk →
R≥0 by setting diam(x) = lim ri if x corresponds to the nested sequence
{D(ai, ri)}. This is easily checked to be well-defined, independent of the
choice of nested sequence. If x ∈ HR

Berk, then diam(x) is just the diameter
(= radius) of the corresponding closed disc. Because K is complete, if x is
of type IV, then diam(x) > 0. Thus diam(x) = 0 for x ∈ A1

Berk of type I,
and diam(x) > 0 for x ∈ HBerk.

If x, y ∈ HBerk with x ≤ y, we define

ρ(x, y) = logv
diam(y)

diam(x)
,

where logv denotes the logarithm to the base qv, with qv > 1 a fixed real
number chosen so that − logv | · | is a prescribed normalized valuation on K.

More generally, for x, y ∈ HBerk arbitrary, we define the path distance
metric ρ(x, y) by

ρ(x, y) = ρ(x, x ∨ y) + ρ(y, x ∨ y) .

It is not hard to verify that ρ defines a metric on HBerk. One can extend ρ
to a singular function on P1

Berk by declaring that if x ∈ P1(K) and y ∈ P1
Berk,
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we have ρ(x, y) = ∞ if x �= y and 0 if x = y. However, we usually only
consider ρ as being defined on HBerk.

It is important to note that the topology on HBerk defined by the metric
ρ is not the subspace topology induced from the Berkovich (or Gelfand)
topology on P1

Berk ⊃ HBerk; it is strictly finer than the subspace topology.
The group PGL(2,K) of Möbius transformations acts continuously on

P1
Berk in a natural way compatible with the usual action on P1(K), and

this action preserves HBerk,H
Q
Berk, and HR

Berk. Using the definition of P1
Berk in

terms of multiplicative seminorms (and extending each [ ]x to a seminorm
on its local ring in the quotient field K(T )), we have [f ]M(x) = [f ◦M ]x
for each M ∈ PGL(2,K). The action of PGL(2,K) on P1

Berk can also be
described concretely in terms of Berkovich’s classification theorem, using
the fact that each M ∈ PGL(2,K) takes closed discs to closed discs. An
important observation is that PGL(2,K) acts isometrically on HBerk, i.e.,

ρ(M(x),M(y)) = ρ(x, y)

for all x, y ∈ HBerk and all M ∈ PGL(2,K). This shows that the path
distance metric ρ is “coordinate-free”.

The diameter function diam can also be used to extend the usual distance
function |x − y| on K to A1

Berk. We call this extension the Hsia kernel and
denote it by δ(x, y)∞. Formally, for x, y ∈ A1

Berk we have

δ(x, y)∞ = diam(x ∨ y) .

It is easy to see that if x, y ∈ K, then δ(x, y)∞ = |x − y|. More generally,
one has the formula

δ(x, y)∞ = lim sup
(x0,y0)→(x,y)

|x0 − y0| ,

where (x0, y0) ∈ K ×K and the convergence implicit in the lim sup is with
respect to the product topology on P1

Berk×P1
Berk. The Hsia kernel satisfies all

of the axioms for an ultrametric with one exception: we have δ(x, x)∞ > 0
for x ∈ HBerk.

The function − logv δ(x, y)∞, which generalizes the usual potential the-
ory kernel − logv |x− y|, leads to a theory of capacities on P1

Berk which gen-
eralizes that of [88] and which has many features in common with classical
capacity theory over C.

There is also a generalized Hsia kernel δ(x, y)ζ with respect to an arbi-
trary point ζ ∈ P1

Berk; we refer the reader to §4.4 for details.

We now come to an important description of P1
Berk as a profinite R-tree.

An R-tree is a metric space (T, d) such that for each distinct pair of points
x, y ∈ T , there is a unique arc in T from x to y, and this arc is a geodesic.
(See Appendix B for a more detailed discussion of R-trees.) A branch point
is a point x ∈ T for which T\{x} has either one or more than two connected
components. A finite R-tree is an R-tree which is compact and has only
finitely many branch points. Intuitively, a finite R-tree is just a finite tree
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in the usual graph-theoretic sense, but where the edges are thought of as
line segments having definite lengths. Finally, a profinite R-tree is an inverse
limit of finite R-trees.

Let us consider how these definitions play out for P1
Berk. If S ⊂ P1

Berk,
define the convex hull of S to be the smallest path-connected subset of P1

Berk

containing S. (This is the same as the set of all paths between points of S.)
By abuse of terminology, a finite subgraph of P1

Berk will mean the convex hull
of a finite subset S ⊂ HR

Berk. Every finite subgraph Γ, when endowed with
the induced path distance metric ρ, is a finite R-tree, and the collection of
all finite subgraphs of P1

Berk is a directed set under inclusion. Moreover, if
Γ ≤ Γ′, then by a basic property of R-trees, there is a continuous retraction
map rΓ′,Γ : Γ′ → Γ. In §1.4, we will show that P1

Berk is homeomorphic
to the inverse limit lim←−Γ over all finite subgraphs Γ ⊂ P1

Berk. (Intuitively,

this is just a topological formulation of Berkovich’s classification theorem.)
This description of P1

Berk as a profinite R-tree provides a convenient way to
visualize the topology on P1

Berk: two points are “close” if they retract to the
same point of a “large” finite subgraph. For each Γ, we let rP1

Berk,Γ
be the

natural retraction map from P1
Berk to Γ coming from the universal property

of the inverse limit.
A fundamental system of open neighborhoods for the topology on P1

Berk is
given by the open affinoid subsets, which are the sets of the form r−1

P1
Berk,Γ

(V )

for Γ a finite subgraph of HR
Berk and V an open subset of Γ. We will refer

to a connected open affinoid subset of P1
Berk as a simple domain. Simple

domains can be completely characterized as the connected open subsets of
P1

Berk having a finite (nonzero) number of boundary points, all of which are
contained in HR

Berk. If U is an open subset of P1
Berk, a simple subdomain of U

is defined to be a simple domain whose closure is contained in U .

Laplacians. The profinite R-tree structure on P1
Berk leads directly to the

construction of a Laplacian operator. On a finite subgraph Γ of P1
Berk (or,

more generally, on any ‘metrized graph’; see Chapter 3 for details), there is
a natural Laplacian operator ∆Γ generalizing the well-known combinatorial
Laplacian on a weighted graph. If f : Γ → R is continuous, and C2 except
at a finite number of points, then there is a unique Borel measure ∆Γ(f) of
total mass zero on Γ such that

(0.1)

∫
Γ
ψ∆Γ(f) =

∫
Γ
f ′(x)ψ′(x) dx

for all continuous, piecewise affine functions ψ on Γ. The measure ∆Γ(f)
has a discrete part and a continuous part. At each P ∈ Γ which is either a
branch point of Γ or a point where f(x) fails to be C2, ∆Γ(f) has a point
mass equal to the negative of the sum of the directional derivatives of f(x)
on the edges emanating from P . On the intervening edges, it is given by
−f ′′(x)dx. (See Chapter 3 for details.)
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We define BDV(Γ) to be the space of all continuous real-valued functions
f on Γ for which the distribution defined by

(0.2) ψ �→
∫
Γ
f ∆Γ(ψ) ,

for all ψ as above, is represented by a bounded signed Borel measure ∆Γ(f).
A simple integration by parts argument shows that this measure coincides
with the one defined by (0.1) when f is sufficiently smooth. The name
“BDV” is an abbreviation for “Bounded Differential Variation”. We call
the measure ∆Γ(f) the Laplacian of f on Γ.

The Laplacian satisfies an important compatibility property with re-
spect to the partial order on the set of finite subgraphs of P1

Berk given by
containment: if Γ ≤ Γ′ and f ∈ BDV(Γ′), then

(0.3) ∆Γ(f |Γ) =
(
rΓ′,Γ

)
∗∆Γ′(f) .

We define BDV(P1
Berk) to be the collection of all functions f : P1

Berk →
R ∪ {±∞} such that:

• f |Γ ∈ BDV(Γ) for each finite subgraph Γ.
• The measures |∆Γ(f)| have uniformly bounded total mass.

Note that belonging to BDV(P1
Berk) imposes no condition on the values of f

at points of P1(K).
Using the compatibility property (0.3), one shows that if f ∈ BDV(P1

Berk),
then the collection of measures {∆Γ} “cohere” to give a unique Borel mea-
sure ∆(f) of total mass zero on the inverse limit space P1

Berk satisfying(
rP1

Berk,Γ

)
∗
∆(f) = ∆Γ(f)

for all finite subgraphs Γ of P1
Berk. We call ∆(f) the Laplacian of f on P1

Berk.
Similarly, if U is a domain (i.e., a nonempty connected open subset)

in P1
Berk, one defines a class BDV(U) of functions f : U → R ∪ {±∞} for

which the Laplacian ∆U (f) is a bounded Borel measure of total mass zero
supported on the closure of U . The measure ∆U (f) has the property that(

rU,Γ

)
∗
∆(f) = ∆Γ(f)

for all finite subgraphs Γ of P1
Berk contained in U .

As a concrete example, fix y ∈ A1
Berk and let f : P1

Berk → R ∪ {±∞} be
defined by f(∞) = −∞ and

f(x) = − logv δ(x, y)∞

for x ∈ A1
Berk. Then f ∈ BDV(P1

Berk), and

(0.4) ∆f = δy − δ∞

is a discrete measure on P1
Berk supported on {y,∞}. Intuitively, the expla-

nation for the formula (0.4) is as follows. The function f is locally con-
stant away from the path Λ = [y,∞] from y to ∞; more precisely, we have
f(x) = f(rP1

Berk,Λ
(x)). Moreover, the restriction of f to Λ is linear (with
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respect to the distance function ρ) with slope −1. For every suitable test
function ψ, we therefore have the “heuristic” calculation∫

P1
Berk

ψ∆f =

∫
Λ
f ′(x)ψ′(x) dx = −

∫ ∞

y
ψ′(x) dx = ψ(y)− ψ(∞) .

(To make this calculation rigorous, one needs to exhaust Λ = [y,∞] by an
increasing sequence of line segments Γ ⊂ HR

Berk and then observe that the
corresponding measures ∆Γf converge weakly to δy − δ∞.)

Equation (0.4) shows that − logv δ(x, y)∞, like its classical counterpart
− log |x− y| over C, is a fundamental solution (in the sense of distributions)
to the Laplace equation. This “explains” why − logv δ(x, y)∞ is the correct
kernel for doing potential theory.

More generally, let ϕ ∈ K(T ) be a nonzero rational function with zeros
and poles given by the divisor div(ϕ) on P1(K). The usual action of ϕ on
P1(K) extends naturally to an action of ϕ on P1

Berk, and there is a continuous
function − logv[ϕ]x : P1

Berk → R ∪ {±∞} extending the usual map x �→
− logv |ϕ(x)| on P1(K). One derives from (0.4) the following version of the
Poincaré-Lelong formula:

∆P1
Berk

(− logv[ϕ]x) = δdiv(ϕ) .

Capacities. Fix ζ ∈ P1
Berk, and let E be a compact subset of P1

Berk\{ζ}.
(For concreteness, the reader may wish to imagine that ζ =∞.) By analogy
with the classical theory over C and also with the non-Archimedean theory
developed in [88], one can define the logarithmic capacity of E with respect
to ζ. This is done as follows.

Given a probability measure ν on P1
Berk with support contained in E, we

define the energy integral

Iζ(ν) =

∫∫
E×E

− logv δ(x, y)ζ dν(x)dν(y) .

Letting ν vary over the collection P(E) of all probability measures sup-
ported on E, one defines the Robin constant

Vζ(E) = inf
ν∈P(E)

Iζ(ν) .

The logarithmic capacity of E relative to ζ is then defined to be

γζ(E) = q
−Vζ(E)
v .

For an arbitrary set H, the logarithmic capacity γζ(H) is defined by

γζ(H) = sup
compact E ⊂ H

γζ(E) .

A countably supported probability measure must have point masses,
and δ(x, x)ζ = 0 for x ∈ P1(K)\{ζ}; thus Vζ(E) = +∞ when E ⊂ P1(K)
is countable, so every countable subset of P1(K) has capacity zero. On the
other hand, for a “nonclassical” point x ∈ HBerk we have Vζ({x}) < +∞,
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since δ(x, x)ζ > 0, and therefore γζ({x}) > 0. In particular, a singleton set
can have positive capacity, a phenomenon which has no classical analogue.
More generally, if E ∩HBerk �= ∅, then γζ(E) > 0.

As a more elaborate example, if K = Cp and E = Zp ⊂ A1(Cp) ⊂
A1

Berk,Cp
, then γ∞(E) = p−1/(p−1). Since δ(x, y)∞ = |x−y| for x, y ∈ K, this

follows from the same computation as in [88, Example 4.1.24].
For fixed E, the property of E having capacity 0 relative to ζ is inde-

pendent of the point ζ /∈ E.
If E is compact and γζ(E) > 0, we show that there is a unique probability

measure µE,ζ on E, called the equilibrium measure of E with respect to ζ,
which minimizes energy (i.e., for which Iζ(µE,ζ) = Vζ(E)). As in the classical
case, µE,ζ is always supported on the boundary of E.

Closely linked to the theory of capacities is the theory of potential func-
tions. For each probability measure ν supported on P1

Berk\{ζ}, one defines
the potential function uν(z, ζ) by

uν(z, ζ) =

∫
− logv δ(z, w)ζ dν(w) .

As in classical potential theory, potential functions need not be contin-
uous, but they do share several of the distinguishing features of continuous
functions. For example, uν(z, ζ) is lower semicontinuous, and it is continuous
at each z /∈ supp(ν). Potential functions on P1

Berk satisfy the following ana-
logues of Maria’s theorem and Frostman’s theorem from complex potential
theory:

Theorem (Maria). If uν(z, ζ) ≤M on supp(ν), then uν(z, ζ) ≤M for
all z ∈ P1

Berk\{ζ}.

Theorem (Frostman). If a compact set E has positive capacity, then
the equilibrium potential uE(z, ζ) satisfies uE(z, ζ) ≤ Vζ(E) for all z ∈
P1

Berk\{ζ}, and uE(z, ζ) = Vζ(E) for all z ∈ E outside a set of capacity
zero.

As in capacity theory over C, one can also define the transfinite diameter
and the Chebyshev constant of E, and they both turn out to be equal to the
logarithmic capacity of E. (In fact, we define three different variants of the
Chebyshev constant and prove that they are all equal.)

As an arithmetic application of the theory of capacities on P1
Berk, we for-

mulate generalizations to P1
Berk of the Fekete and Fekete-Szegö theorems from

[88]. The proofs are easy, since they go by reducing the general case to the
special case of RL-domains, which was already treated in [88]. Nonetheless,
the results are aesthetically pleasing because in their statement, the simple
notion of compactness replaces the awkward concept of “algebraic capac-
itability”. The possibility for such a reformulation is directly related to the
fact that P1

Berk is compact, while P1(K) is not.
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Harmonic functions. If U is a domain in P1
Berk, a real-valued function

f : U → R is called strongly harmonic on U if it is continuous, belongs to
BDV(U), and if ∆U (f) is supported on ∂U . The function f is harmonic on
U if every point x ∈ U has a connected open neighborhood on which f is
strongly harmonic.

Harmonic functions on domains U ⊆ P1
Berk satisfy many properties anal-

ogous to their classical counterparts over C. For example, a harmonic func-
tion which attains its maximum or minimum value on U must be constant.
There is also an analogue of the Poisson formula: if f is a harmonic function
on an open affinoid U , then f extends uniquely to the boundary ∂U , and
the values of f on U can be computed explicitly in terms of f |∂U . A version
of Harnack’s principle holds as well: the limit of a monotonically increas-
ing sequence of nonnegative harmonic functions on U is either harmonic or
identically +∞. Even better than the classical case (where a hypothesis of
uniform convergence is required), a pointwise limit of harmonic functions
is automatically harmonic. As is the case over C, harmonicity is preserved
under pullbacks by meromorphic functions.

Fix ζ ∈ P1
Berk, and let E be a compact subset of P1

Berk\{ζ}. We define
the Green’s function of E relative to ζ to be

G(z, ζ;E) = Vζ(E)− uE(z, ζ)

for all z ∈ P1
Berk. We show that the Green’s function is everywhere non-

negative and that it is strictly positive on the connected component U ζ of
P1

Berk\E containing ζ. Also, G(z, ζ;E) is finite on P1
Berk\{ζ}, with a logarith-

mic singularity at ζ, and it is harmonic on Uζ\{ζ}. Additionally, G(z, ζ;E)
is identically zero on the complement of Uζ outside a set of capacity zero.
The Laplacian of G(z, ζ;E) on P1

Berk is equal to δζ−µE,ζ . As in the classical
case, the Green’s function is symmetric as a function of z and ζ: we have

G(z1, z2;E) = G(z2, z1;E)

for all z1, z2 �∈ E. In a satisfying improvement over the theory for P1(Cp) in
[88], the role of G(z, ζ;E) as a reproducing kernel for the Berkovich space
Laplacian becomes evident.

As an arithmetic application of the theory of Green’s functions and ca-
pacities on P1

Berk, we prove a Berkovich space generalization of Bilu’s equidis-
tribution theorem for a rather general class of adelic heights.

Subharmonic functions. We give two characterizations of what it
means for a function on a domain U ⊆ P1

Berk to be subharmonic. The
first, which we take as the definition, is as follows. We say that a function
f : U → R ∪ {−∞} is strongly subharmonic if it is upper semicontinuous,
satisfies a further technical semicontinuity hypothesis at points of P1(K),
and if the positive part of ∆U (f) is supported on ∂U . We say that f is
subharmonic on U if every point of U has a connected open neighborhood
on which f is strongly subharmonic. We also say that f is superharmonic
on U if −f is subharmonic on U . As an example, if ν is a probability
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measure on P1
Berk and ζ �∈ supp(ν), the potential function uν(x, ζ) is strongly

superharmonic on P1
Berk\{ζ} and is strongly subharmonic on P1

Berk\ supp(ν).
A function f is harmonic on U if and only if it is both subharmonic and
superharmonic on U .

As a second characterization of subharmonic functions, we say that f :
U → R ∪ {−∞} (not identically −∞) is domination subharmonic on the
domain U if it is upper semicontinuous and if for each simple subdomain V
of U and each harmonic function h on V for which f ≤ h on ∂V , we have
f ≤ h on V . A fundamental fact, proved in §8.2, is that f is subharmonic
on U if and only if it is domination subharmonic on U .

Like harmonic functions, subharmonic functions satisfy the Maximum
Principle: if U is a domain in P1

Berk and f is a subharmonic function which at-
tains its maximum value on U , then f is constant. In addition, subharmonic
functions on domains in P1

Berk are stable under many of the same operations
(e.g., convex combinations, maximum, monotone convergence, uniform con-
vergence) as their classical counterparts. There is also an analogue of the
Riesz Decomposition Theorem, according to which a subharmonic function
on a simple subdomain V ⊂ U can be written as the difference of a harmonic
function and a potential function. We also show that subharmonic functions
can be well-approximated by continuous functions of a special form, which
we call smooth functions.

In §8.10, we define the notion of an Arakelov-Green’s function on P1
Berk

and establish an energy minimization principle used in the proof of the main
result in [9]. We give two proofs of the Energy Minimization Principle, one
using the theory of subharmonic functions and another using the Dirichlet
pairing.

Multiplicities. If ϕ ∈ K(T ) is a nonconstant rational function, then as
discussed above, the action of ϕ on P1(K) extends naturally to an action of
ϕ on P1

Berk. We use the theory of Laplacians to give an analytic construction
of multiplicities for points in P1

Berk which generalize the usual multiplicity
of ϕ at a point a ∈ P1(K) (i.e., the multiplicity of a as a preimage of
b = ϕ(a) ∈ P1(K)). Using the theory of multiplicities, we show that the
extended map ϕ : P1

Berk → P1
Berk is a surjective open mapping. We also

obtain a purely topological interpretation of multiplicities, which shows that
our multiplicities coincide with those defined by Rivera-Letelier. For each
a ∈ P1

Berk, the multiplicity of ϕ at a is a positive integer, and if char(K) = 0,
it is equal to 1 if and only if ϕ is locally injective at a. For each b ∈ P1

Berk, the
sum of the multiplicities of ϕ over all preimages of b is equal to the degree
of ϕ.

Using these multiplicities, we define the pushforward and pullback of a
bounded Borel measure on P1

Berk under ϕ. The pushforward and pullback
measures satisfy the expected functoriality properties; for example, if f is
subharmonic on U , then f ◦ϕ is subharmonic on ϕ−1(U) and the Laplacian
of f ◦ ϕ is the pullback under ϕ of the Laplacian of f .
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Applications to the dynamics of rational maps. Though Berkovich
introduced his theory of analytic spaces with rather different goals in mind,
Berkovich spaces are well adapted to the study of non-Archimedean dynam-
ics. The fact that the topological space P1

Berk is both compact and connected
means in practice that many of the difficulties encountered in “classical”
non-Archimedean dynamics disappear when one defines the Fatou and Julia
sets as subsets of P1

Berk. For example, the notion of a connected component
is straightforward in the Berkovich setting, so one avoids the subtle issues
involved in defining Fatou components in P1(Cp) (e.g., the D-components
versus analytic components in Benedetto’s paper [14], or the definition by
Rivera-Letelier in [83]).

Suppose ϕ ∈ K(T ) is a rational function of degree d ≥ 2. In §10.1,
we construct a canonical probability measure µϕ on P1

Berk attached to ϕ,
whose properties are analogous to the well-known measure on P1(C) first
defined by Lyubich and by Freire, Lopes, and Mañé. The measure µϕ is
ϕ-invariant (i.e., satisfies ϕ∗(µϕ) = µϕ) and also satisfies the functional
equation ϕ∗(µϕ) = d · µϕ.

In §10.2, we prove an explicit formula and functional equation for the
Arakelov-Green’s function gµϕ(x, y) associated to µϕ. These results, along
with the Energy Minimization Principle mentioned earlier, play a key role in
applications of the theory to arithmetic dynamics over global fields (see [5]
and [9]). In §10.3, we use these results to prove an adelic equidistribution
theorem (Theorem 10.24) for the Galois conjugates of algebraic points of
small dynamical height over a number field k.

We then discuss analogues for P1
Berk of classical results in the Fatou-Julia

theory of iteration of rational maps on P1(C). In particular, we define the
Berkovich Fatou and Julia sets of ϕ and prove that the Berkovich Julia set Jϕ
(like its complex counterpart, but unlike its counterpart in P1(K)) is always
nonempty. We give a new proof of the Favre–Rivera-Letelier equidistribution
theorem for iterated pullbacks of Dirac measures attached to nonexceptional
points, and using this theorem, we show that the Berkovich Julia set shares
many properties with its classical complex counterpart. For example, it is
either connected or has uncountably many connected components, repelling
periodic points are dense in it, and the “Transitivity Theorem” holds.

In P1(K), the notion of equicontinuity leads to a good definition of
the Fatou set. In P1

Berk, as was pointed out to us by Rivera-Letelier, this
remains true when K = Cp but fails for general K. We explain the subtleties
regarding equicontinuity in the Berkovich case and give Rivera-Letelier’s
proof that over Cp the Berkovich equicontinuity locus coincides with the
Berkovich Fatou set. We also give an overview (mostly without proof) of
some of Rivera-Letelier’s fundamental results concerning rational dynamics
over Cp. While some of Rivera-Letelier’s results hold for arbitrary K, others
make special use of the fact that the residue field of Cp is a union of finite
fields.
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Appendices. In Appendix A, we review some facts from real analysis
and point-set topology which are used throughout the text. Some of these
(e.g., the Riesz Representation Theorem) are well known, while others (e.g.,
the Portmanteau theorem) are hard to find precise references for. We have
provided self-contained proofs for the latter. We also include a detailed
discussion of nets in topological spaces: since the space P1

Berk,K is not in
general metrizable, sequences do not suffice when discussing notions such as
continuity.

In Appendix B, we discuss R-trees and their relation to Gromov’s theory
of hyperbolic spaces. This appendix serves two main purposes. On the one
hand, it provides references for some basic definitions and facts about R-trees
which are used in the text. On the other hand, it provides some intuition for
the general theory of R-trees by exploring the fundamental role played by
the Gromov product, which is closely related to our generalized Hsia kernel.

Appendix C gives a brief overview of some basic definitions and results
from Berkovich’s theory of non-Archimedean analytic spaces. This material
is included in order to give the reader some perspective on the relationship
between the special cases dealt with in this book (the Berkovich unit disc,
affine line, and projective line) and the general setting of Berkovich’s theory.





Notation

We set the following notation, which will be used throughout unless oth-
erwise specified. Symbols are listed roughly in the order they are introduced
in the book, except that related notations are grouped together.

Z the ring of integers.
N the set of natural numbers, {n ∈ Z : n ≥ 0}.
Q the field of rational numbers.
Q a fixed algebraic closure of Q.
R the field of real numbers.
C the field of complex numbers.
Qp the field of p-adic numbers.
Zp the ring of integers of Qp.
Cp the completion of a fixed algebraic closure of Qp for some

prime number p.
Fp the finite field with p elements.

Fp a fixed algebraic closure of Fp.
K a complete, algebraically closed non-Archimedean field.
K× the set of nonzero elements in K.
| · | the non-Archimedean absolute value on K.
‖x, y‖ the spherical distance on P1(K) associated to |·|, and also

the spherical kernel, its canonical upper semicontinuous
extension to P1

Berk (see §4.3).
‖(x, y)‖ the norm max(|x|, |y|) of a point (x, y) ∈ K2 (see §10.1).

qv a fixed real number greater than 1 associated to K, used
to normalize | · | and ordv(·).

logv(t) shorthand for logqv(t).
ordv(·) the normalized valuation − logv(| · |) associated to | · |.
|K×| the value group of K, that is, {|α| : α ∈ K×}.
O the valuation ring of K.
m the maximal ideal of O.
K̃ the residue field O/m of K.

g̃(T ) the reduction, in K̃(T ), of a function g(T ) ∈ O(T ).
K[T ] the ring of polynomials with coefficients in K.
K(T ) the field of rational functions with coefficients in K.
K[[T ]] the ring of formal power series with coefficients in K.
K〈T 〉 the Tate algebra of formal power series converging on the

closed unit disc.

xxix
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A1 the affine line over K.
P1 the projective line over K.

A1
Berk the Berkovich affine line over K.

P1
Berk the Berkovich projective line over K.

HBerk the “hyperbolic space” P1
Berk\P1(K).

HQ
Berk the set of points of type II in HBerk (corresponding to

rational discs in K).
HR

Berk the set of points of type II or III in HBerk (corresponding
to either rational or irrational discs in K).

ζa,r the point of A1
Berk corresponding to D(a, r) under Berko-

vich’s classification theorem.
ζGauss the ‘Gauss point’ ζ0,1, corresponding to D(0, 1).
[ ]x the seminorm associated to a point x ∈ P1

Berk.
[x, y] the path (or arc) from x to y.

x ∨ζ y the point where the paths [x, ζ], [y, ζ] first meet.
x ∨∞ y the point where the paths [x,∞], [y,∞] first meet.
x ∨ y shorthand for x ∨ζGauss

y.
Ta the ‘projectivized tangent space’ at a ∈ P1

Berk, the set
of equivalence classes of paths emanating from a which
share a common initial segment (see §B.6 in Appendix B).

�v ∈ Ta a tangent direction at a (see §B.6 in Appendix B).
δ(x, y)ζ the generalized Hsia kernel with respect to ζ (see §4.4).

diamζ(x) the number δ(x, x)ζ .
diam∞(x) the number δ(x, x)∞, equal to limi→∞ ri for any nested

sequence of discs {D(ai, ri)} corresponding to x ∈ A1
Berk.

diam(x) the number ‖x, x‖ = δ(x, x)ζGauss
.

ρ(x, y) the path distance metric on HBerk; see §2.7.
�(Z) the total path length of a set Z ⊂ HBerk.

jζ(x, y) the fundamental potential kernel relative to the point ζ,
given by jζ(x, y) = ρ(ζ, x ∨ζ y).

X the closure of a set X in P1
Berk.

Xc the complement P1
Berk\X.

∂X the boundary of a set X.
X(K) the set of K-rational points in X, i.e., X ∩ P1(K) .
clH(X) the closure of a set X ⊂ HBerk, in the strong topology.
∂H(X) the boundary of a set X ⊂ HBerk, in the strong topology.
D(a, r) the closed disc {x ∈ K : |x − a| ≤ r} of radius r ≥ 0

centered at a. If r ∈ |K×|, we call the disc rational; if
r �∈ |K×|, we call it irrational.

D(a, r)− the open disc {x ∈ K : |x− a| < r} of radius r about a.
D(a, r) the closed Berkovich disc {x ∈ ABerk : [T − a]x ≤ r}

corresponding to the classical disc D(a, r).
D(a, r)− the open Berkovich disc {x ∈ ABerk : [T − a]x < r} corre-

sponding to the classical disc D(a, r)−.
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B(a, r) the closed ball {x ∈ P1(K) : ‖x, a‖ ≤ r} of radius r about
a in P1(K), relative to the spherical distance ‖x, y‖.

B(a, r)− the open ball {x ∈ P1(K) : ‖x, a‖ < r} of radius r about
a in P1(K), relative to the spherical distance.

B(a, r)ζ the closed ball {z ∈ P1
Berk : δ(x, y)ζ ≤ r}.

B(a, r)−ζ the open ball {z ∈ P1
Berk : δ(x, y)ζ < r}.

B(a, r) the closed ball {x ∈ P1
Berk : ‖x, a‖ ≤ r} = B(a, r)ζGauss

.

B(a, r)− the open ball {x ∈ P1
Berk : ‖x, a‖ < r} = B(a, r)−ζGauss

.

Ba(�v)− the component of P1
Berk\{a} corresponding to �v ∈ Ta.

B̂(a, δ) the set {z ∈ HBerk : ρ(a, z) ≤ δ}, a closed ball for the
strong topology.

B̂(a, δ)− the set {z ∈ HBerk : ρ(a, z) < δ}, an open ball for the
strong topology.

B̂X(a, δ)− for X ⊂ HBerk, the set X ∩ B̂(a, δ)−.
X(ζ, δ) the set {z ∈ P1

Berk : diamζ(x) ≥ δ} = B̂(ζ,− logv(δ)).
Γ a finite metrized graph.

CPA(Γ) the space of continuous, piecewise affine functions on Γ.
Zh(Γ) the Zhang space of Γ (see §3.4).

BDV(Γ) the space of functions of ‘bounded differential variation’
on Γ (see §3.5).

〈f, g〉Γ,Dir the Dirichlet pairing on Γ, for f, g ∈ BDV(Γ).
d�v(f) the derivative of f in the tangent direction �v.

f ′
+ the one-sided derivative of f in the positive direction

along an oriented segment.
f ′
ζ,+ the derivative d�v(f) in the direction �v towards ζ.

∆Γ(f) the Laplacian of f ∈ BDV(Γ).
∆(f) in Chapter 3, the Laplacian ∆Γ(f); elsewhere, ∆P1

Berk
(f).

rU,X the retraction map from a domain U to a closed subset
X, often written rX .

(rU,X)∗(µ) the pushforward from U to X of a measure µ, under rU,X .
C(U) the space of continuous functions on U .
C(U) the space of continuous functions on the closure U .

CPA(U) the space of functions of the form f ◦ rU,Γ, with f ∈
CPA(Γ) for some finite graph Γ ⊂ U .

BDV(U) the space of functions of ‘bounded differential variation’
on a domain U (see §5.4).

C(U) ∩ BDV(U) by abuse of notation, the space of functions f ∈ C(U)
with f |U ∈ BDV(U) (see Definition 5.13).

Cc(U) the space of continuous functions vanishing outside a
compact subset of U .

CPAc(U) the set of functions in CPA(U) vanishing outside a com-
pact subset of U .

BDVc(U) the set of functions in BDV(U) vanishing outside a com-
pact subset of U .
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∆U (f) the complete Laplacian of f ∈ BDV(U) (see §5.4).
∆U (f) the Laplacian ∆U (f)|U of f ∈ BDV(U) (see §5.4).
∆∂U (f) the boundary derivative ∆U (f)|∂U of f ∈ BDV(U).
〈f, g〉U,Dir the Dirichlet pairing on a domain U .

λ the one-dimensional Hausdorff measure on HBerk, which
restricts to dx on each segment.

supp(µ) the support of a measure µ.
|µ| the measure µ1 + µ2, if the Jordan decomposition of the

measure µ is µ1 − µ2.
Iζ(µ) the ‘energy integral’

∫∫
− logv(δ(x, y)ζ) dµ(x)dµ(y) for µ.

uµ(z, ζ) the potential function
∫
− logv(δ(x, y)ζ) dµ(y) for µ.

Vζ(E) the Robin constant of a set E, relative to the point ζ.
γζ(E) the logarithmic capacity of a set E, relative to ζ.

µE the equilibrium distribution of a set E.
uE(z, ζ) the potential function associated to µE .

G(x, ζ;E) the Green’s function of a set E of positive capacity.
d∞(E)ζ the transfinite diameter of a set E relative to ζ (see §6.4).
CH(E)ζ the Chebyshev constant of E relative to ζ (see §6.4).
CH∗(E)ζ the restricted Chebyshev constant of E relative to ζ.
CHa(E)ζ the algebraic Chebyshev constant of E relative to ζ.

E an ‘adelic set’
∏

v Ev for a number field k (see §7.8).
X a finite, Galois-stable set of points in P1(k).
Pn the set of n-dimensional probability vectors.

Γ(E,X) the global Green’s matrix of E relative to X.
V (E,X) the global Robin constant of E relative to X.
γ(E,X) the global capacity of E relative to X.
H(U) the space of harmonic functions on an open set U .
SH(U) the space of subharmonic functions on an open set U .

f∗ the upper semicontinuous regularization of a function f .
M+(U) the space of positive, locally finite Borel measures on an

open set U .
M+

1 (U) the space of Borel probability measures on U .
gµ(x, y) the Arakelov-Green’s function associated to a probability

measure µ.
AG [ζ] the space of Arakelov-Green’s functions having a singu-

larity at ζ.
ϕ(T ) a rational function in K(T ).
ϕ∗(µ) the pullback of a measure µ by the rational function ϕ.
ϕ∗(µ) the pushforward of a measure µ by ϕ.

ϕ(n)(T ) the n-fold iterate ϕ ◦ · · · ◦ ϕ.
deg(ϕ) the degree of the rational function ϕ(T ) ∈ K(T ).
mϕ(a) the multiplicity of ϕ(T ) at a ∈ P1

Berk.
mϕ(a,�v) the multiplicity of ϕ(T ) at a in the tangent direction �v.
rϕ(a,�v) the rate of repulsion of ϕ(T ) at a in the direction �v.
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Nβ(V ) the number of solutions to ϕ(z) = β in V , counting mul-
tiplicities.

N+
ζ,β(V ) the number max(0, Nζ(V )−Nβ(V )).
Aa,c the open Berkovich annulus with boundary points a, c.

Mod(A) the modulus of an annulus A.
µϕ the ‘canonical measure’ associated to ϕ(T ).

gϕ(x, y) another name for the Arakelov-Green’s function gµϕ(x, y)
(see §10.2).

ĥϕ,v,(x) the Call-Silverman local height function associated to
ϕ(T ) and the point x.

HF the homogeneous dynamical height function associated
to F = (F1, F2), where F1, F2 ∈ K[X,Y ] are homogenous
polynomials.

Res(F ) the resultant of the homogeneous polynomials F1, F2.
GO(x) the ‘grand orbit’ of a point x ∈ P1

Berk under ϕ(T ) ∈ K(T ).
Eϕ the ‘exceptional set’ of all points in P1

Berk having finite
grand orbit under ϕ(T ).

Fϕ the Berkovich Fatou set of ϕ(T ).
Jϕ the Berkovich Julia set of ϕ(T ).
Kϕ the Berkovich filled Julia set of a polynomial ϕ(T ) ∈

K[T ].
Hp the space HBerk, when K = Cp.

Ax(ϕ) the immediate basin of attraction of an attracting fixed
point x for ϕ(T ) ∈ Cp(T ).

E(ϕ) the domain of quasi-periodicity of a function ϕ(T ) ∈
Cp(T ).
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The purpose of this book is to develop the foundations of 
potential theory and rational dynamics on the Berkovich 
projective line over an arbitrary complete, algebraically closed 
non-Archimedean field. In addition to providing a concrete 
and “elementary” introduction to Berkovich analytic spaces 
and to potential theory and rational iteration on the Berkovich 
line, the book contains applications to arithmetic geometry and 
arithmetic dynamics. A number of results in the book are new, 
and most have not previously appeared in book form. Three 
appendices—on analysis, R-trees, and Berkovich’s general 
theory of analytic spaces—are included to make the book as 
self-contained as possible.

The authors first give a detailed description of the topological 
structure of the Berkovich projective line and then introduce the 
Hsia kernel, the fundamental kernel for potential theory. Using 
the theory of metrized graphs, they define a Laplacian operator 
on the Berkovich line and construct theories of capacities, 
harmonic and subharmonic functions, and Green’s functions, all 
of which are strikingly similar to their classical complex coun-
terparts. After developing a theory of multiplicities for rational 
functions, they give applications to non-Archimedean dynamics, including local and 
global equidistribution theorems, fixed point theorems, and Berkovich space analogues 
of many fundamental results from the classical Fatou-Julia theory of rational itera-
tion. They illustrate the theory with concrete examples and exposit Rivera-Letelier’s 
results concerning rational dynamics over the field of p -adic complex numbers. They 
also establish Berkovich space versions of arithmetic results such as the Fekete-Szegö 
theorem and Bilu’s equidistribution theorem.
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