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ABSTRACT. For each of the 26 sporadic finite simple groups, we construct 
a 2-completed classifying space, via a homotopy decomposition in terms of 
classifying spaces of suitable 2-local subgroups; this leads to an additive de­
composition of the mod 2 group cohomology. We also summarize the current 
status of knowledge in the literature about the ring structure of the mod 2 
cohomology of those groups. 

Our decompositions arise via recent homotopy colimit theorems of various 
authors: in those results, the colimit is indexed by a collection of 2-subgroups, 
which is "ample" in the sense of affording the desired cohomology decom­
position. Furthermore our decompositions are "sharp" in the sense of being 
simplified by the collapse of an underlying spectral sequence. 

Among the various standard ample collections available in the topological 
literature, we make a suitably minimal choice for each group—and we further 
interpret that collection in terms of an equivalent "2-local geometry" from 
the group theory literature: namely as a simplicial complex determined by 
certain 2-local subgroups. In particular, we complete the verification that for 
each sporadic group, an appropriate 2-local geometry affords a small ample 
collection. One feature which emerges in each case is that the geometry has 
"flag-transitive" action by the group, so that the orbit complex (the quotient 
space modulo that action) is a simplex: and then the diagram of classifying 
spaces of subgroups which indexes the homotopy decomposition is a pushout n-
cube of the relevant dimension n (though sometimes that orbit simplex diagram 
is further simplified via cancellations). 

The work begins with a fairly extensive initial exposition, intended for 
non-experts, of background material on the relevant constructions from alge­
braic topology, and on local geometries from group theory. The subsequent 
chapters then use those structures to develop the main results on individual 
sporadic groups. 
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Introduction 

The 26 sporadic simple groups have played an exceptional role in the theory 
and classification1 of the finite simple groups, ever since the discovery of the first 
few such groups in the late 1800s. In the last decade or so, various authors have 
also observed exceptional behavior in the mod p group cohomology of some of the 
sporadic groups, especially at the prime p — 2; see for example Benson [24, 25, 26], 
Benson and Wilkerson [29], Milgram [92, 93, 94]. Determining (or at least describ­
ing) the cohomology of sporadic groups represents an area of considerable current 
activity; and such study combines methods of algebraic topology with information 
and techniques from finite group theory. 

In this work, we provide for each sporadic group a description of a 2-completed 
classifying space, in terms of classifying spaces of suitable 2-local subgroups. In 
particular, this leads to an additive decomposition of the mod 2 group cohomology. 
Similar decompositions can be obtained for odd primes p; but the indexing set of 
p-local subgroups is usually smaller and often less interesting. 

Although our focus here is on sporadic groups, we emphasize that this work 
should be also be viewed in relation to work on cohomology of the other simple 
groups. For example, our decompositions for sporadic groups are largely inspired 
by a standard decomposition (see Example 5.1.18) of the mod p cohomology for 
a group of Lie type of characteristic p. However, even in that model case for Lie 
type groups, it remains a major open problem to give an explicit description of the 
individual component terms and their cohomology. In contrast, the cohomology 
and completed classifying spaces of groups of Lie type in coprime characteristic are 
rather well understood in the light of the extraordinary work of Quillen [103] for 
the general linear groups, and subsequent work along the same lines by Fiedorowicz 
and Priddy [60] for the remaining classical groups and Kleinerman [81] for the 
groups of exceptional Lie type. Cohomology and classifying spaces of symmetric 
and alternating groups are understood to some extent (Nakaoka [99], Mui [97], 
Mann [89, 90], Gunawardena, Lannes and Zarati [70], Ha and Lesh [71], etc). 

The context of this work. Naturally the structure of the p-local subgroups2 

in a finite group G should provide an important ingredient in the determination of 
its mod-p group cohomology. One p-local approach to cohomology, often used as a 
tool in modern work on individual sporadic groups, is provided by the topological 
literature on cohomology decompositions. In particular, we mention Dwyer's anal­
ysis [51, 53] of ample collections C of p-subgroups of G, namely collections which 

The reader who is uneasy with the classification of the finite simple groups may insert 
"known" before "sporadic simple groups" here. The classification is not used in our analysis in 
this work, which studies only the properties of those 26 individual sporadic groups. 

A p-local subgroup is the normalizer of a non-identity p-subgroup. 

ix 
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afford an additive decomposition of the mod p group cohomology of G, where the 
components are given by the cohomology of certain p-local subgroups of G (for ex­
ample, the normalizers of the p-groups in C). The origins of these decompositions go 
back to work of Brown, Quillen, and Webb in the 1970s and 1980s. More recently, 
treatments of certain ample collections (notably by Jackowski, McClure, Oliver, 
Dwyer, and Grodal) consider homotopy decompositions, namely corresponding de­
compositions not at the level of cohomology, but instead at the deeper topological 
level of the classifying space BG. Here the decomposition is in fact afforded by 
a homotopy colimit, in which the component terms are classifying spaces of suit­
able subgroups of G, and the terms are indexed by a category determined by the 
collection C. For these purposes, there are various standard ample collections in 
the literature, such as SP(G) defined by all nontrivial p-subgroups; but often the 
standard collections are too large to be useful for practical computation, so that it 
is also of interest to determine ample subcollections which are as small as possible. 

Several years ago, the first author initiated the project that became this work: 
namely the construction, via a homotopy decomposition over subgroups, of a 2-
completed classifying space BG2 for each sporadic group G. One motivation was 
the observation that for a number of the sporadic groups, the group theory literature 
(especially that on 2-local geometries) already contained information sufficient to 
determine a small ample collection, and hence a homotopy decomposition—for 
example, collections corresponding to the 2-local geometries treated in Smith and 
Yoshiara [116], and the geometry used in Benson [24]. For the remaining sporadic 
groups, progress was initially slower, since the larger groups require substantially 
more complicated analysis. However, recent work of various authors on the 2-local 
structure of large sporadic groups has led for example to the completion in Yoshiara 
[131] of the determination of the 2-radical subgroups of the remaining sporadic 
groups. So, combining such results in group theory with the homotopy colimit 
theorems indicated above, in the present work we exhibit for each of the 26 sporadic 
groups a small ample collection related to a 2-local geometry, and the corresponding 
homotopy decomposition. In each case, since the group acts flag-transitively on the 
geometry, the relevant homotopy colimit is over an indexing category given by 
a simplex\ so that the diagram of classifying spaces is that of a pushout n-cube 
in the relevant dimension n. (Occasionally cancellations simplify the calculation 
to an even smaller subdiagram.) We show furthermore that each decomposition 
is sharp, in Dwyer's sense of affording an alternating sum decomposition of group 
cohomology via the formula of Webb—this simplification arises from the collapse of 
an underlying spectral sequence. In particular, these results confirm a conjecture 
(see [116, Conj. 1, p. 376]) concerning such a connection between group theory 
and algebraic topology. That conjecture was necessarily somewhat vague, since 
the 2-local geometries in the literature were defined in a number of different ways; 
however, in this work we do indicate for each group a 2-local geometry suitable for 
our purposes. 

Outline of the work. Our treatment is fairly lengthy, so we indicate some of 
its main features in overview. 

Chapter 1 gives a brief summary of our main results. 
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Since we wish to make our account accessible both to group theorists and to 
homotopy theorists, we then present in Part 1 an extensive exposition for non­
experts of some of the background material involved in each area. 

Most of Part 1 is devoted to a review of selected topological material leading 
up to, and into, the modern literature3 on decompositions of group cohomology: 
Chapter 2 recalls some basics of the group cohomology of a finite group G\ in­
cluding aspects of the topological approach via the classifying space BG, and of 
"approximating" BG—via the Borel construction on a suitable G-space. In the 
classical literature, these spaces of interest are viewed as topological spaces; but 
in Chapter 3, we will indicate the more modern viewpoint on spaces as simplicial 
sets—emphasizing the standard equivalence (due to Quillen) of those two view­
points, in terms of the homotopy categories they determine. In Chapter 4, we then 
adopt the viewpoint of simplicial sets—since that is the appropriate general context 
for our description there of two important constructions due to Bousfield and Kan, 
namely completions and homotopy colimits. Chapter 5 then reviews some of the 
more specific literature on homotopy decompositions of the classifying space, given 
in Dwyer's viewpoint via a homotopy colimit indexed by a collection of p-subgroups; 
the chapter then examines some of the standard particular collections which are 
ample in the sense of affording such a decomposition. 

Part 1 concludes with Chapter 6, which reviews various notions from the group 
theory literature, primarily relevant to 2-local geometries for sporadic groups; espe­
cially from the viewpoint of their observed connections with the ample collections 
of 2-subgroups and decompositions described in Chapter 5. 

Part 2 then presents the main results of our work. Chapter 7 contains a section 
on each of the individual sporadic groups G: We indicate a homotopy decomposi­
tion for the 2-completed classifying space BG2 , in terms of a small ample collection 
determined by a suitable 2-local geometry—with a corresponding additive decom­
position of the mod 2 group cohomology of G. We also add, where available, further 
remarks on the status of knowledge in the literature about the full ring structure of 
the mod 2 cohomology. In some cases, our results are fairly immediate deductions 
from results already in the literature; but in the remaining cases where we require a 
more substantial argument, we sometimes postpone the detailed proofs to sections 
corresponding to the relevant groups in our final Chapter 8. 

We close this Introduction with a brief mention of a topic which we will touch 
on repeatedly later, but for which we have not tried to develop our own exposition 
in this work: 

Foreword on Lie type groups and buildings. Our main results in Chapter 
7 are concerned with the 26 sporadic simple groups, viewed via their 2-local geome­
tries; but at various points in our expository Chapters 4-6, it will also be natural 
to consider examples given instead by the simple groups of Lie type, together with 
their natural geometries given by Tits buildings. There are a number of reasons for 
this, among them: 

• Buildings are simplicial complexes providing convenient and very natural 
spaces for a number of the topological constructions we will be examining. 

In particular we will frequently quote from a very useful recent exposition on decompositions 
and their background by Dwyer [53]—which we strongly urge readers to consult alongside our 
exposition. 
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• Various standard results on groups of Lie type and buildings provide a "model 
case" for homology decompositions and related research areas—often providing 
motivation for generalizations to other groups, or even to all finite groups. 

• The 2-local geometries for sporadic groups were inspired by certain analogies 
with buildings. 

In particular, our main results for sporadic groups involve a homotopy de­
composition indexed by a simplex—and these can be regarded as analogues of the 
corresponding standard result for Lie type groups, see Example 5.1.18. 

When we discuss examples from the theory of Lie type groups, our approach 
will be to quote the relevant properties from the literature, wherever they arise in 
our development, for example in Example 4.6.3—rather than attempting to provide 
a single exposition of that material beforehand; for nowadays a number of fuller 
introductions to the Lie theory are readily available. (But we do review a fair 
number of relevant properties at Example 5.1.1.) 

In particular, an expository treatment of groups of Lie type, tailored to the 
general context of our work here, can be found in Section 6.8 of the book [22] of 
the first author. We also mention the expository discussion of buildings given in 
Chapter 2 of the book [115] now in preparation4 by the second author. These two 
treatments also list various additional references: on groups of Lie type, we mention 
especially Carter [43] as well as Ch. 2-4 in the third volume [64] of the series of 
Gorenstein, Lyons, and Solomon; and on buildings, Brown [36] and Ronan [105]. 

Acknowledgments. We are grateful to a number of colleagues who have read 
earlier versions of this work, and made a number of corrections and very helpful 
comments and suggestions; including Jianbei An, Masato Sawabe, Satoshi Yoshiara, 
John Maginnis, Silvia Onofrei, Jesper Grodal, and Bob Oliver. 

Benson is partly supported by NSF grant DMS-0242909 and by a Senior Sci­
entist Prize from the Humboldt Foundation. Smith is partly supported by NSA 
grant MDA 903-03-1-0100 and subsequent grants. 

As of this writing (June 2007), revised Chapters 1-3 are visible on the Web at the URL 
http:/ /www.math.uic.edu/~smiths/book/book.ps; further revisions will continue at least through 
later 2007. 



Some general notation and conventions 

We indicate here at the outset some fairly standard general notation, which we 
normally follow throughout this work. (Of course we will introduce more specific 
notation as needed later on in the course of the text.) 

We write A := B or B =: A to indicate that A is defined to be equal to B; 
whereas we write A = B to denote an equality between already defined objects. 

Conventions for groups. We use G to denote some finite group.We empha­
size that at least initially, G can be an arbitrary finite group; we will not restrict 
our focus to simple groups (and in particular, sporadic groups) until Chapter 6. 
We indicate below some common conventions for general finite groups; for further 
details, see standard treatments such as Gorenstein, Lyons, and Solomon [64]. 

For a prime p, we write Op(G) for the largest normal p-subgroup of G, and 
Op(G) for the smallest normal subgroup of G for which G/Op(G) is a p-group. 
Thus Op(G) is generated by the //-elements of of G. 

If H and K are subgroups of a group G, we write [H, K] for the subgroup of 
G generated by the commutators h~1k~1hk where h G H and k G K. We write 
Ln(G) for the nth term in the lower central series of G, defined by LQ(G) := G and 
Ln_i_i(G) := [Ln(G),G]. We write LQO(G) for the intersection of the Ln(G), namely 
the final term in the lower central series. This is the smallest normal subgroup of 
G for which the quotient is nilpotent. Since a finite nilpotent group is the direct 
product of its Sylow p-subgroups, we have 

Loo (G) =f]0"(G); G/Lcv (G) * J ] G/0*>(G). (0.0.1) 
V V 

Suppose that H < K < G are finite groups. We say that H is weakly closed in 
K with respect to G if the only G-conjugate of H in K is H itself. In particular, 
this implies that H is normal in K. 

Atlas conventions, with some variations. For the names of simple groups, and 
for various notation related to their subgroup structure, we use the conventions of 
the Atlas [47]; see the Atlas for fuller details. We summarize some of these usages 
below, indicating several small modifications that we use in this work. Many of 
these conventions can be seen in subgroups of the sporadic groups given in the 
table in Chapter 1. 

Group extensions: The notation N: H indicates a split extension with normal 
subgroup Â  and quotient H; while N'H indicates a nonsplit extension. The no­
tation N H makes no statement about whether the extension splits. For example, 
all three of these notations for extensions arise for subgroups in the entry for the 
Fischer group Fif

24: in the table in Chapter 1. 

xiii 
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Structure of certain p-groups: If m and n are positive integers, we write mn 

for an abelian group (Z/ra)n , and in particular we use a number m to denote 
Z/ra, except where confusion might result from these abbreviations. The notation 
pa+6+--- denotes a p-group having an ascending central series with quotients of rank 
a, 6, • • •; square brackets [a] indicate order pa with no assertion about a series. In 
particular, p 1 + 2 n denotes an extraspecial p-group of width n; with exponent p when 
p is odd. When p = 2, the two types of extraspecial 2-groups of width n are denoted 
by 21

f
+2n and 23i+2n, where the sign indicates the type of the orthogonal form on the 

central quotient. In width n = 1, we have 2++2 = D8 , the dihedral group of order 
8; and 2_+ = Qg, the quaternion group of order 8. More generally D 2 m denotes 
the dihedral group of order 2m. 

Almost-simple groups: We write E n for the symmetric group of degree n, and 
Altn for the alternating group of degree n (the Atlas uses Sn and An).5 We write 
Qjn(2) and £2 "̂n(2) for the simple subgroup (usually the commutator subgroup, of 
index two) in the orthogonal group over the field F2 of two elements (the Atlas uses 
0 ^ ( 2 ) and 0^~n(2), which elsewhere is often used instead for the full orthogonal 
group). Finally, we write Sp2n(2) for the symplectic group over F2 (the Atlas uses 
S2n(2)). We follow the Atlas in writing Ln{q) and Un(q) for the simple linear and 
unitary groups; and 02 (2) for the group of exceptional Lie type 0 2 over F2 . 

We write 0 I H for the wreath product (copies of 0 permuted by H); there is 
really only one instance where we use this, namely in one of the 2-local subgroups 
of the Harada-Norton group HN in Section 7.19, where 

Alt5 J2 = (Alt5 x Alt5):2. 

Conventions for coefficient rings and homology. We let R denote a com­
mutative ring with unit; typically R appears as the coefficient ring for homological 
algebra. 

Often we will specialize R to rings of particular interest: we write Z for the ring 
of rational integers, and ¥p for the Galois field of p elements. We write Z(p) for the 
ring of p-local integers; namely the local subring of the rationals Q obtained from 
Z by inverting all primes other than p. The quotient ring Z(p)/pZ(p) is isomorphic 
to the field ¥p. In Chapter 7 on the sporadic groups, we will specialize to p = 2 
(though similar results can be obtained for odd p). 

For homology and cohomology, we follow the convention that a comma used 
as a delimiter indicates group (co)homology, in expressions such as H*(G,R); 
while a semicolon as a delimiter, in expressions such as H*(X;R), indicates the 
(co)homology of a space X. See for example Proposition 2.2.7(1) where both no­
tations appear. 

NOTATION 0.0.2 (Spectral sequences). Beginning at Section 2.6, we will be 
considering certain spectral sequences for homology and cohomology. For more 
detail on general spectral sequences, see for example Chapter 3 of [22]. 

We index homology spectral sequences E% t and cohomology spectral sequences 
E2 in such a way that s is the horizontal coordinate and t is the vertical coordi­
nate.6 Consequently the vertical axis is given by the terms with 5 = 0. 

We have chosen to use Al t n , to avoid confusion with our later practice in Chapters 6-8 of 
using An to denote an elementary abelian 2-group of rank n. 

Warning for the non-expert: notice this is the convention for Cartesian coordinates; it is the 
opposite of the linear algebra convention for indexing the rows and columns of a matrix. 
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We say that the spectral sequence is first quadrant if the terms are zero for 
s < 0 and for t < 0. The spectral sequences we encounter will be first quadrant. 

We recall, for example from [22, p. 99]: A (homology) spectral sequence is said 
to be strongly convergent if given s and t, there exists some finite value n > 2 such 
that E™t = E^°t; and further for fixed m, the terms E™t on the diagonal s + 1 = m 
form a set of filtration quotients for the ra-th homology group that the spectral 
sequence is designed to compute. For cohomology spectral sequences, one uses the 
corresponding notation E^jt and E%£ in the definition. It is standard that first 
quadrant spectral sequences are strongly convergent, so this convergence holds for 
the sequences we will encounter. <0 

N O T A T I O N 0.0.3 (Limits and colimits). We shall use the terms limit and colimit 
(written lim and colim) to refer to what are sometimes known as inverse limit and 

direct limit (see for example Spanier [117, p. 18]), or as projective limit and inductive 
limit respectively (depending on when and where you were educated). 

We recall some features of these functors related to the s tandard setting in 
homological algebra of exactness, derived functors, and adjointness; for further 
reference, see for example Benson [21, p. 22] [22, Sec. 7.2] or Weibel [125, Sec. 2.6]. 
For modules, the functor lim is left exact; and the right derived functors of lim 

are writ ten lim \ The functor colim is right exact; and its left derived functors are 

writ ten colim j. (See for example [21, Exer., p. 244]; and 2.6.9 in [125], as well as 

2.6.4 and 2.6.1 there.) These left derived functors will be described in more detail 
when we need them later, in Section 4.8. 0 

Conventions for spaces. Through Chapter 2, the letter X will usually denote 
a topological space. For reference on classical algebraic topology, see standard texts 
such as Spanier [117]. 

In the chapters thereafter, much of the topological material will be developed 
instead in the language of simplicial sets (see for example May [91] for further 
reference); so starting just before Section 3.7, we will use the word "space" to mean 
simplicial set. Then X will usually denote such a space, and we will apply various 
topological notions to spaces in this new sense. 

However, we will recall in Section 3.6 that the viewpoints of topological spaces 
and of simplicial sets are in fact equivalent for our present purposes. Hence even in 
our later chapters, the reader can typically still think of a space X informally just 
as a classical topological space. 

We denote a space (in either of the above senses) which consists of a single 
point by a star •; sometimes * will be contained as a basepoint in a larger space. 
We use a 5-pointed star, to avoid conflict with the use of an asterisk * (6-pointed 
star) for several other purposes: namely the customary sequence of dimensions in 
homological expressions such as H*(G, R), and the join X*Y of simplicial complexes 
or topological spaces. 

If / and g are maps of spaces from I to 7 , we write f ~ g if f and g are 
homotopic. We write X c± Y if spaces X and Y are homotopy equivalent. (We 
use the symbol = to denote an isomorphism, and we usually then also specify the 
category in which that map is a morphism.) 

We follow the notational convention from topology that if X is a set or a space 
admitting action of the group G, then X9 denotes the fixed points of g G G, and 
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XG the fixed points of G. If X is a subset of 6?, we use g~xXg to denote conjugation 
by g\ this avoids the ambiguity of using the group theory convention of X9 for this 
conjugation. 

We shall write X for the Bousfield-Kan Fp-completion (¥p)OQX of X; see 
Notation 4.3.5. 

Finally, we mention that our Index also serves as a reference for further notation 
and definitions. 
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fibrant, 36 
fibration, 22, 36 

Hurewicz —, 22 
Serre —, 22 

filtered complex, 20 
finite field ¥p, xiv 
first quadrant (spectral sequence), xv 
first spectral sequence, 51 
Fischer group 

F i 2 2 , 2, 64, 108, 208, 253 
Fi23, 2, 64, 108, 211 
Fz 2 4 , 3, 61, 65, 108, 215, 255 

Fischer-Griess Monster group M = F i , 3, 
229 

five lemma, 13, 16 
flag-transitivity, 97, 137 

for Alt7, see also Alt7 
for M24 (sample proof), 140 
for buildings of Lie type groups, 138 

free 
action, 10 
resolution, 8 

function space, 34, 43 
functor 

adjoint pair of —s, xv 
derived —, see also derived functors 
exact —, xv 
left derived —, xv 
left exact —, xv 
right derived —, xv 
right exact —, xv 

fundamental 
group, 38, 48 

of classifying space, 11 
groupoid, 38 

Galois field F p , xiv 
GAP, 107, 162, 182, 191, 201, 209, 234, 

238, 247, 266 
G-(simplicial) complex, 25 
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