KNOTS, MOLEOULES ano the vine:ise: ANTNHODUHIOSTO TOPOLOHY

with

Maia Averett
Lance Bryant
Shea Burns
Jason Callahan
Jorge Calvo
Marion Moore Campisi

David Clark
Vesta Coufal
Elizabeth Denne
Berit Givens
McKenzie Lamb
Emille Davie Lawrence

Lew Ludwig
Cornelia Van Cott Leonard Van Wyk Robin Wilson
Helen Wong
Andrea Young

KNOTS, MOLECULES, AND THE UNIVERSE: AN INTRODUCTION TO TOPOLOGY

KNOTS, MOLECULLES, AND THE UNIVERSE: AN INTRODUCTION TO TOPOLOGY

ERICA FLAPAN

		with
Maia Averett	David Clark	Lew Ludwig
Lance Bryant	Vesta Coufal	Cornelia Van Cott
Shea Burns	Elizabeth Denne	Leonard Van Wyk
Jason Callahan	Berit Givens	Robin Wilson
Jorge Calvo	McKenzie Lamb	Helen Wong
Marion Moore Campisi	Emille Davie Lawrence	Andrea Young

2010 Mathematics Subject Classification. Primary 57M25, 57M15, 92C40, 92E10, 92D20, 94C15.

For additional information and updates on this book, visit www.ams.org/bookpages/mbk-96

Library of Congress Cataloging-in-Publication Data

Flapan, Erica, 1956-
Knots, molecules, and the universe : an introduction to topology / Erica Flapan ; with Maia Averett [and seventeen others].
pages cm
Includes index.
ISBN 978-1-4704-2535-7 (alk. paper)

1. Topology-Textbooks. 2. Algebraic topology-Textbooks. 3. Knot theory-Textbooks. 4. Geometry-Textbooks. 5. Molecular biology-Textbooks. I. Averett, Maia. II. Title.

QA611.F45 2015
514-dc23
2015031576

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center's RightsLink ${ }^{\circledR}$ service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.
(c) 2016 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(@) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 212019181716$

Contents

Preface xi
Acknowledgments
Part 1. Universes
Chapter 1. An Introduction to the Shape of the Universe 3

1. To Infinity and Beyond
2. A. Square and His Universe 3
3. Straightest Paths in Flatland 8
4. Exploring the Shape of a Cave 11
5. Creating Universes by Gluing 13
6. Games on a Gluing Diagram for a Cylinder and a Torus 15
7. Extended Diagrams 17
8. Introducing the 3-Dimensional Torus and Sphere 19
9. Distinguishing a 2 -Sphere from a 2 -Torus 22
10. Distinguishing a 3 -Sphere from a 3 -Torus 24
11. Exercises 26
Chapter 2. Visualizing Four Dimensions 29
12. Teaching A. Square About the Third Dimension 29
13. Projections and Perceptions 31
14. Movies and Movement 33
15. Inductively Defining Cubes of Dimensions $0,1,2$, and 3 36
16. A. Square Learns About a 3-Dimensional Cube 37
17. A 4-Dimensional Cube 40
18. Tetrahedra in Various Dimensions 42
19. Exercises 44
Chapter 3. Geometry and Topology of Different Universes 49
20. Intrinsic and Extrinsic Properties of a Space 49
21. Intrinsic and Extrinsic Geometry 52
22. Straightest Paths and Geodesics 53
23. The Definition of a Triangle 59
24. The Sum of the Angles of a Triangle 60
25. Triangles on a Flat and Curved Torus 61
26. Triangles on a Flat and a Curved Cylinder 62
27. Extrinsic and Intrinsic Topology 64
28. Using Loops to Understand Intrinsic Topology 67
29. Local and Global Properties 69
30. Manifolds 71
31. Assumptions about Universes 72
32. A 2-Dimensional Sphere with a Point Removed 74
33. A 3-Dimensional Sphere with a Point Removed 77
34. Curves on a Torus 78
35. How to Draw a (p, q)-Curve on a Flat Torus 80
36. Lines in the Extended Diagram of a Flat Torus 83
37. Exercises 84
Chapter 4. Orientability 87
38. The Möbius Strip 87
39. Orientation Reversing Paths 89
40. The Klein Bottle 90
41. The 3-Dimensional Klein Bottle 92
42. Tic-Tac-Toe on a Torus and Klein Bottle 93
43. The Projective Plane 96
44. The Projective Plane with a Disk Removed 98
45. Projective 3-Dimensional Space 100
46. 1-Sided and 2-Sided Surfaces 101
47. Non-orientability and 1 -Sidedness 103
48. Exercises 106
Chapter 5. Flat Manifolds 109
49. Flat Surfaces 109
50. Flat Gluing Diagrams 110
51. The Point of a Cone 114
52. Using Extended Diagrams to Understand Cone Points 116
53. Anti-cone Points 119
54. We Show that the 3-Torus Is Flat 120
55. A Method to Determine if a Glued Up Cube Is Flat 122
56. Extended Diagrams of Glued Up Cubes 123
57. Other Types of Gluings of a Cube 127
58. Exercises 128
Chapter 6. Connected Sums of Spaces 135
59. Einstein-Rosen Bridges 135
60. Connected Sums of Surfaces 136
61. Arithmetic Properties of the Connected Sum 137
62. Gluing Diagrams for $n T^{2}$ and $n P^{2}$ 138
63. The Classification of Surfaces 140
64. Dividing a Surface into Vertices, Edges, and Faces 142
65. The Euler Characteristic of a Surface 144
66. The Euler Characteristic of Connected Sums 146
67. The Genus of a Surface 147
68. The Genus of $n T^{2}$ and $n P^{2}$ 150
69. Connected Sums of 3-Manifolds 151
70. Exercises 153
Chapter 7. Products of Spaces 157
71. Products of Sets 157
72. Products of Spaces 159
73. A. Square and A. Pentagon Are Products 160
74. Some Products where One Factor Is a Circle 162
75. Examples of Spaces Incorrectly Expressed as Products 164
76. The Topological Uniqueness of Products 166
77. The Dimension of Product Spaces 167
78. Visualizing $S^{2} \times S^{1}$ and $n T^{2} \times S^{1}$ 168
79. Geometric Products 170
80. Geometric Products of Flat Spaces 171
81. A Flatland-Friendly Geometric $S^{1} \times I$ 173
82. Flat 3-Dimensional Spaces as Geometric Products 174
83. A Geometric $n T^{2} \times S^{1}$ 177
84. A Geometric $S^{2} \times S^{1}$ 179
85. Isotropic and Non-isotropic Spaces 180
86. Exercises 181
Chapter 8. Geometries of Surfaces 185
87. Euclid's Axioms 185
88. Flat Surfaces and Euclidean Geometry 191
89. Some Alternative Axioms 192
90. Spherical Trigonometry 193
91. The Area of a Disk in a Sphere 196
92. Maps of the Earth 199
93. Hyperbolic Geometry 200
94. A. Square Learns to Draw a Hyperbolic Plane 202
95. Homogeneous Geometries for all $n T^{2}$ with $n \geq 2$ 205
96. A Homogeneous Geometry for P^{2} 207
97. Uniqueness of Homogeneous Geometries for Surfaces 208
98. Exercises 209
Part 2. Knots
Chapter 9. Introduction to Knot Theory 215
99. 1-Dimensional Universes 215
100. When Are Two Knots Equivalent? 217
101. The Mirror Image of a Knot or Link 219
102. The Connected Sum of Two Knots 220
103. A Brief History of Knot Theory 221
104. Reidemeister Moves 223
105. Coloring Knots with Three Colors 226
106. Tricolorability and Knot Equivalence 229
107. Oriented Knots and Invertibility 232
108. Connected Sums of Non-invertible Knots 233
109. Exercises 235
Chapter 10. Invariants of Knots and Links 239
110. What's an Invariant? 239
111. Crossing Number, Tricolorability, and Number of Components 241
112. Positive and Negative Crossings 242
113. Writhe 244
114. Linking Number 245
115. Nugatory Crossings and Alternating Knots and Links 247
116. Tait's Conjectures about Alternating Knots 248
117. What Proportion of Knots Are Alternating? 250
118. Seifert Surfaces 252
119. The Genus of a Knot 254
120. Using Euler Characteristic to Compute Genus 257
121. A Potpourri of Knot Invariants 258
122. Exercises 263
Chapter 11. Knot Polynomials 269
123. An Introduction to Polynomial Invariants 269
124. The Rules for the Bracket Polynomial 270
125. The Bracket Polynomial and Reidemeister II Moves 272
126. The Bracket Polynomial with Only One Variable 274
127. The Bracket Polynomial and Reidemeister I Moves 275
128. The X-Polynomial 277
129. The Jones Polynomial 279
130. The State Model for Computing the Bracket Polynomial 282
131. Exercises 285
Part 3. Molecules
Chapter 12. Mirror Image Symmetry from Different Viewpoints 291
132. Mirror Image Symmetry 291
133. Geometric Symmetry 293
134. Geometric Chirality and Achirality 294
135. Chemical Chirality and Achirality 295
136. Chemical Achirality and Geometric Chirality of Figure 8 298
137. Euclidean Rubber Gloves 301
138. Geometrically Chiral and Achiral Knots 302
139. A Topological Rubber Glove 304
140. Topological Chirality 306
141. Exercises 308
Chapter 13. Techniques to Prove Topological Chirality 311
142. Topological Chirality 311
143. Molecular Knots 312
144. Technique 1: Knot Polynomials 313
145. Technique 2: 2-Fold Branched Covers 315
146. Technique 3: Chiral Subgraphs 318
147. Some Graph Theory 320
148. Technique 4: A Combinatorial Approach 322
149. Exercises 325
Chapter 14. The Topology and Geometry of DNA 329
150. Synthetic versus Biological Molecules 329
151. The Biology of DNA 330
152. The Problem of Packing DNA into a Cell 332
153. Supercoiling 333
154. Visualizing DNA as a Circular Ribbon 335
155. The Linking Number of the Backbones 337
156. The Average Writhe of the Axis 339
157. The Twist of a Backbone around the Axis 340
158. The Relationship between Linking, Twisting, and Writhing 343
159. Representing the Supercoiling with a Single Number 345
160. Replication 346
161. Site Specific Recombination 348
162. Knotted and Linked Products of Recombination 349
163. An Introduction to Tangles 350
164. Rational Tangles 352
165. Operations on Tangles 354
166. The Tangle Model of Site Specific Recombination 355
167. Applying the Model to the Enzyme Tn3 Resolvase 357
168. Exercises 358
Chapter 15. The Topology of Proteins 361
169. An Introduction to Proteins 361
170. Trapping Knots in Proteins 362
171. Which Knots Occur in Proteins? 364
172. Examples of Knotted and Linked Proteins 366
173. Non-planar Graphs in Metalloproteins 369
174. The Protein Structure Nitrogenase 373
175. Möbius Ladders in Metalloproteins 376
176. Möbius Ladders in Small Proteins 378
177. Goodbye for Now 380
178. Exercises 381
Index 383

Preface

There are a quite a few excellent topology textbooks written for undergraduate mathematics majors in their junior or senior year of college. Such books usually begin with an introduction to point set topology, followed by geometric topics such as homotopy, covering spaces, knot theory, the classification of surfaces, or some area of applied topology. While not all undergraduate topology texts follow this precise structure, almost all presuppose experience with proofs and exposure to a rigorous definition of continuity. For math departments that do not have a large number of majors or have an inordinate burden of service courses to teach, offering a topology course which presupposes such a background is almost impossible. As a result, many mathematics majors graduate without having the opportunity to take a topology class.

In addition to textbooks written for math majors, there are a number of noteworthy intuitive introductions to topology intended for a wider audience. Such books are great for curious students and for the general public, but can be difficult to teach out of because they rarely include definitions, statements of theorems, or a sufficient number of elementary exercises (without solutions in the back).

What seems to be absent from the available topology books is one that is easy to teach from, includes a wide range of topics, has no prerequisites, and makes no assumptions about the mathematical sophistication or motivation of the reader. Such a book could be the basis for a course that would attract students to the math major who might not be excited by the analytical and algebraic arguments that they typically see in their math courses during the first two years of college.

This book is intended to fill this gap. It is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any particular mathematical or scientific background, sophistication, or even motivation to study abstract mathematics. It is meant to be fun and engaging while at the same time drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by non-mathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook.

With this in mind, all of the concepts are introduced with explicit definitions and the theorems are clearly stated so that it is easy for an instructor to develop lectures and for students to refer to when doing the homework. Some theorems are proved formally, others are proved intuitively, and for those results that aren't proved, students are told in which advanced course they might expect to see a proof. In addition, each chapter concludes with numerous exercises which are at a level appropriate for students in their first two years of college, and whose solutions are only available to instructors.

In contrast with most topology textbooks, the style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form. For example, rather than introducing the formal definition of an isotopy, two knots are defined to be equivalent if one can be deformed to the other. This style of presentation allows students to develop intuition about topology and geometry without getting bogged down in technical details. In addition, the topics in the book were chosen for their visual appeal, which is highlighted by the abundance of illustrations throughout. In order to make the text more fun and engaging, early on it introduces a cast of characters who reappear in multiple chapters. This includes the 1-dimensional character A. Dash, the 2-dimensional characters A. Square and B. Triangle, and the 3-dimensional character A. 3D-Girl, each of whom is learning about geometry and topology in order to understand his or her own universe. The characters are illustrated with amusing pictures that entice readers to think about the experience from the character's point of view.

The book is divided into three parts corresponding to the three areas referred to in the title. Part 1, consisting of Chapters 1-8, concerns two and three dimensional universes, though there is a brief foray into the fourth dimension in Chapter 2. The goal of Part 1 is to develop techniques that enable creatures in a given space to visualize possible shapes for their universe, and to use topological and geometric properties to distinguish one such space from another.

The second part of the text, consisting of Chapters $9-11$, provides an introduction to knots and links. Building on the ideas developed in Part 1, the emphasis in Part 2 is on deformations of knots and links, and the use of invariants to distinguish inequivalent knots and links. Tricolorability is introduced in Chapter 9 as an invariant which is relatively simple to understand and apply but does not distinguish many knots. Then Chapter 10 surveys a collection of invariants which are not hard to understand but in some cases are hard to compute, and in the exercises we ask the reader to figure out what invariants should be used to distinguish a given pair of knots or links. Finally, Chapter 11 introduces the Kauffman bracket and Jones polynomial, and provides a step-by-step explanation of how to compute them, as well as some theorems that illustrate their power.

The third part of the text, consisting of Chapters 12-15, presents applications of topology and geometry to chemistry and molecular biology. In particular, Chapter 12 compares the concepts of mirror image symmetry from geometric, topological, and chemical viewpoints. It also introduces the idea of using embeddings of graphs in 3-dimensional space as models of non-rigid molecules. Then Chapter 13 presents techniques that can be used to show that some non-rigid molecules are topologically distinct from their mirror images. Chapter 14 explores the topology and geometry of DNA, developing material about rational tangles as a way to model DNA recombination. Finally, Chapter 15 describes topologically complex protein structures, giving examples of knotted and linked proteins, as well as proteins containing nonplanar graphs. While Chapter 13 depends on Chapter 12, Chapters 14 and 15 are independent of one another and of Chapters 12 and 13. Thus an instructor can choose which of the applied topics they would like to cover.

The three parts of the book make it usable as a textbook for several different types of courses. For example, Part 1 of the book could be the basis for a seminar for first year college students on a topic such as "Dimensions and the Shape of
the Universe." Since the book is written with students in mind, the instructor could give daily reading assignments and then lead the class in a discussion of the material followed by breaking the class into small groups to work through some of the exercises. Such a seminar would also lend itself well to open ended writing projects on diverse topics: Describe a sport that could take place in a 2-dimensional universe. Pick a well-known game (for example chess, checkers, Othello, Hex, or Go), and explain how the strategy for the game would change if it were played on a flat torus or a flat Klein bottle. Design a 4-dimensional version of such a game, and explain how the strategy compares to the usual 2 - or 3-dimensional version. Imagine the form of a 4-dimensional person, and explain what we would see if the person passed through our space in different ways. If we had a spaceship that could travel in any direction as fast and far as we would like, what evidence should the spaceship seek to help us figure out the shape of our universe? These are a few of the topics.

The book could serve as the text for a topology course for math majors with or without prerequisites. The instructor could either cover all three parts of the text, or pick and choose topics from each of the three parts and supplement with point set topics from a more traditional topology text. Another option for a course for math majors would be for the instructor to give lectures to introduce each chapter, and then have students take turns giving lectures on each section within a chapter. The sections were intentionally made short to enable students to read and understand a single section at a time.

The text could also be used for an interdisciplinary course linking topology with molecular biology and chemistry. In this case, the course would focus on Part 2 and Part 3 (comprising Chapters $9-15$). Part 2 would give students enough background in knot theory to understand the applications to molecular symmetry and the topology of DNA and proteins developed in Part 3. Note that it is not necessary for students to read Part 1 in order to understand Part 2, nor is it necessary for students to have a background in biology or chemistry in order to understand Part 3.

A geometry course for future teachers could also be based on this text. Such courses often consist of an axiomatic approach to Euclidean and non-Euclidean geometry. However, approaching geometry this way can be tedious and may actually kill any natural interest the student has in geometry. By contrast, a course for future teachers based on this text would focus on developing geometric thinking and visual intuition together with problem solving and mathematical reasoning. Such a course would cover Part 1, culminating in Chapter 8 which presents Euclid's five Axioms and alternatives to the Fifth Axiom that are valid on a sphere and a hyperbolic plane. The instructor for such a course would want to present the material slowly in order to emphasize visualization and logical deduction throughout. The nearly 450 illustrations in the text are designed to help students develop their visual intuition, and the many exercises at the end of each chapter would give students necessary practice writing mathematical arguments. Furthermore, the exercises are designed to encourage students to explain their reasoning in complete sentences and integrate illustrations into their explanations whenever possible. This course could culminate with a project such as designing a museum exhibit featuring the student's choice of the ten most important images from the text with an introduction to the exhibit and short explanatory descriptions associated with each image.

The students could also be asked to include some 3-dimensional models constructed themselves.

Finally, because the text is readable by students and is self-contained, the book would be well suited for an independent study or senior year project. Also, because of its lack of prerequisites and its division into three parts and the subdivision of each chapter into short sections, it would work well as the textbook for a four-week winter term or a summer course.

We hope that at least in some small way this book contributes to one or more of the following large goals: it motivates some undergraduates to major in math; it motivates some math majors to study topology; it motivates some math students to read their textbooks; it convinces some future $\mathrm{K}-12$ teachers that geometry is fun; or it convinces some future scientists, administrators, or government officials that even the purest areas of mathematics can have important applications. At the very least, we hope that you and your students enjoy reading it.

Acknowledgments

As is apparent from the eighteen co-authors listed on the cover, this book has an unusual history. It began as lecture notes I developed for an intensive course I taught at the Summer Mathematics Program (SMP) at Carleton College for eleven summers between 2000 and 2014. The SMP was a very successful four-week, NSFfunded program for women students in their first and second year of college, with the goal of motivating, encouraging, and mentoring these students to get PhD's in mathematics. The students in the program had some prior exposure to proofs, but there was no specific prerequisite material. The aim of my course was to introduce them to the beauty and applications of topology and geometry, with the hope that the visual types of thinking they would experience might motivate those who were not as excited by algebraic and analytical arguments to continue in mathematics.

My course was originally inspired by three books. I used ideas from Jeffrey Weeks' wonderful book The Shape of Space to introduce the geometry and topology of 2- and 3-manifolds; I used ideas from Colin C. Adams' excellent book The Knot Book to expose students to knot theory; and I used ideas from my own book When Topology Meets Chemistry to explore applications of topology to molecular structures. However, over the fourteen years that I taught the course, my lectures took on a life of their own, veering away from these books. In particular, my approach to 2- and 3-manifolds became more formal than that of Weeks, though some of the arguments and organization in Chapters 1 through 8 are similar to his. For example, the proof in Chapter 4 that a surface in an orientable 3 -manifold is 1 sided if and only if it is non-orientable is essentially the same as his, simply because I couldn't imagine a better proof. My approach to knot theory became focused on invariants in contrast with Adams' comprehensive introduction to knot theory, and my approach to applications of topology became less rigorous and more lighthearted than that of When Topology Meets Chemistry, and included the topology of proteins which was not in my earlier book.

While my lecture notes worked well for the intensive course that I taught at SMP, I did not originally foresee them becoming a book that could be used more widely. However, my ideas changed when I led the Undergraduate Faculty Program (UFP) at the Park City Mathematics Institute (PCMI) in 2011. As the leader of the UFP, I was charged with guiding a group of faculty to collaboratively produce materials that could be used at a wide range of institutions. I helped select the 18 UFP participants largely based on their interest in developing an undergraduate topology course with few or no prerequisites. These faculty members, who ranged from post-docs to full professors, came from a great variety of institutions. Some of their institutions were small while others were large, some were private and others public, and some had significant numbers of students headed for graduate school
in mathematics, while others had few math majors, almost none of whom would go on to graduate school.

During the UFP, I divided my lectures notes into twelve parts that would become twelve chapters of the manuscript. I then divided the eighteen participants into six groups of three and assigned each group two parts of my lecture notes to make into two chapters, one in the first half of the book and the other in the second half. Starting with their parts of the notes, the groups added topics, examples, exercises, figures, and more complete explanations. In addition, all eighteen UFP participants helped to write solutions to the exercises that were in the 2011 draft of the manuscript. After the program was over, some of the participants continued working on the manuscript in various capacities including editing chapters and adding more exercises and solutions. Ultimately, I revised, edited, rewrote, and added to the final manuscript so that it would all be in the same style and level, and would flow well.

Below, I list the eighteen UFP participants together with their individual contributions to the manuscript during and after the program.
\square Maia Averett co-wrote Chapters 2 and 9, and edited Chapter 8.
\square Lance Bryant co-wrote Chapters 3 and 10, and edited solutions for exercises in Chapter 3.
\square Shea Burns co-wrote Chapters 3 and 10.

- Jason Callahan co-wrote Chapters 3 and 10, edited Chapters 6, 7, and 11, co-created the table of contents and index, clarified throughout the book which proofs would be included in the manuscript and which would be seen in more advanced courses, standardized numbering of results throughout, and contributed the book's title.
\square Jorge Calvo co-wrote Chapters 2 and 9, edited Chapter 5, created some of the most difficult figures, and formatted and standardized word usage in Chapters 1-7.
- Marion Moore Campisi co-wrote Chapters 4 and 11, and added and edited figures throughout.
- David Clark co-wrote Chapters 2, 9, 10, and 14, revised and added exercises to Chapters 9, 10, and 11, edited solutions for exercises in Chapters 4 and 14 , added and edited figures throughout, ensured all figures complied with AMS graphics guidelines, helped develop ideas for the graphic on the cover, and compiled this list of contributions.
\square Vesta Coufal co-wrote Chapters 5 and 13, edited Chapters 1 and 10, added exercises to Chapters 6 and 7, checked lengths of sections, created common preambles for the chapters, co-created the table of contents and index, created a driver file, and worked out the technical details of formatting the final manuscript.
- Elizabeth Denne co-wrote Chapters 6, 7, and 12, edited Chapters 6, 7, 12, and 14, edited solutions for exercises in Chapters 6, 7, and 12, added exercises to Chapter 9, added references and URLs, and proofread the entire manuscript twice.
\square Berit Givens co-wrote Chapters 5 and 13, edited Chapters 1 and 3, and edited solutions for exercises in Chapters 6, 7, and 13.
\square McKenzie Lamb co-wrote Chapters 4 and 11, and edited solutions for exercises in Chapter 8.
\square Emille Davie Lawrence co-wrote Chapters 1 and 8, edited the preface, introduction, and Chapters 5-15, added exercises to Chapter 3, and designed the graphic for the cover.
\square Lew Ludwig co-wrote Chapters 6, 7, and 12, edited Chapter 9, formatted the manuscript as a book, and compiled a list of URLs used in the book.
\square Cornelia Van Cott co-wrote Chapters 1 and 8, edited Chapters 10 and 11, and edited solutions for exercises in Chapters 9, 10, and 11.
- Leonard Van Wyk co-wrote Chapters 6, 7, and 12.
\square Robin Wilson co-wrote Chapters 4, 11, and 14, and created figures for the solutions.
- Helen Wong co-wrote Chapters 5, 8, and 13, edited Chapters 1, 3, 7, 8, 14 , and 15 . Helen has also been my unofficial sounding board and helper for so many aspects of this book that I cannot list them all.
\square Andrea Young co-wrote Chapters 1 and 8, edited Chapter 4, and edited solutions for exercises in Chapters 1 and 8.
In addition to the work of the UFP participants, several undergraduate and graduate students contributed to the development of the manuscript and solutions. I list them below together with their affiliation at the time when they worked on the project.
\square Bryan Brown (undergraduate at Pomona College) proofread a draft of the entire manuscript and the solutions.
\square Dwayne Chambers (PhD student at Claremont Graduate University) provided technical support during PCMI, $\mathrm{T}_{\mathrm{E}} \mathrm{Xed}$ solutions and created figures for the solutions during PCMI.
\square Gabriella Heller (undergraduate at Pomona College) wrote the first version of Chapter 15 and created the protein drawing using the program Pymol.
- Indra Elizabeth Kumar (undergraduate at Scripps College) created and edited figures throughout the manuscript. In particular, the pictures of A. 3D-Girl were designed and created by her.
\square Becky Patrais (PhD student at University of Minnesota) proofread and edited solutions to exercises.
\square Benjamin Russell (undergraduate at Carleton College) wrote and edited some solutions to exercises in Chapters 8 and 15.
I also want to take this opportunity to thank Jeff Weeks and Colin Adams. Much of the manuscript was inspired by their outstanding books. In addition, I am grateful to Jeff Weeks for encouraging me to pursue this project. When I was afraid this manuscript would be too similar to his book The Shape of Space, he insisted that what is important is bringing this material to more students, not who was first to do so. I am also indebted to Colin Adams for his suggestions along the way, and for helpful comments on the figures throughout the manuscript. I hope this book is anywhere near as clear and inspiring as the many wonderful books that Colin has written.

Finally, I want to thank Grace Hibbard for generously sharing her mother Helen Wong with me for the last year of this project. Last, but certainly not least, I want to thank Francis Bonahon and Laure Flapan, whose love and support sustained me throughout this project and always.

Index

2-fold branched cover, 316
Abbott, Edwin A., 5
achiral
chemically, 296 315
geometrically, 294
topologically, 306322
Allis, Victor, 16
angle, 3952
right, 171188
sum, 59, 109185
anti-cone point, 114205209
area
finite, 84140
infinite, 6
associative, 137153
atom, 221294315
automorphism, 321
identity, 322
order, 322
$B^{3}, 13$ see also ball, 3-dimensional
ball, 21
3-dimensional, 13128
boundary, 7
bridge number, 260
chiral
chemically, 296311316
geometrically, 294311
intrinsically, 325
topologically, 306311
circle, 6
great, 958
circumference, 197
commutative, 137153
cone point, 114209
cone, infinite, 26
connected sum
of knots, 220233249
of surfaces, 203, 255
continued fraction, 353
Conway, John H., 353
cross-cap, 100142

negative (left-handed), 243313
nugatory, 247
overcrossing, 270 293 351
positive (right-handed), 243 313
resolving, 271
split (A-split or B-split), 283
splitting, 282
undercrossing, 217 $243 \boxed{270} 293$
crossing number, 218, 241, 269, 281
cube, 19
0 -dimensional, 36
1-dimensional, 36
2-dimensional, 36
3-dimensional, 36173
4-dimensional, $40 \quad 179$
n-dimensional, 47
solid,41
cut and paste, 140
cycloid, 378
cylinder, 15
Connect Four, 15
curved, 62
finite, 31
flat, 62
infinite, 6 62110
slanted, 46
D^{2},13 see also disk
dimension, 6,13
disk, 721596
open, 74
distance, 3150
distributive, 183
DNA, 216292,397312
axis, 335
backbone, 332
base pairs, 331
duplex, 331
overwound, 346
relaxed, 331335
site, 335348
substrate, 348
twist, 340
underwound, 346
Einstein-Rosen bridge, 106135
enzyme, 347
ball, 355
recombinase, 348
Euler characteristic, 144,257
Euler, Leonhard, 144
extended diagram, 176193
Flatland, 5
genus, 148
of a knot, 254
of a Seifert surface, 254
geodesic, 53,174
Geometrization Conjecture, 153
geometry
Euclidean, 191
extrinsic, 52293
intrinsic, 5291109
local, 70180
spherical, 197
gluing, 13
abstractly glued, 156
gluing diagram, 13, 61 88109138,145
hexagonal, 1101541208
octagonal, 128206
polygonal, 111 205
polyhedral, 122
graph, 294 298311
complete, 322
complete bipartite, 322
embedding, 320370376
non-planar, 361376
handedness (left and right handed), 291
301
handle, 6141
adding, 252
hemisphere, 138497
homogeneous, 7192109181185205
I, see also interval, 160
identity element, 137220
induction, 147154
inverse, 138153
isotropic, 181
Jones, Vaughan, 279
K^{2}, see also Klein bottle, 91
K^{3}, see also Klein bottle, 3-dimensional, 92
Klein bottle, 90113145
3-dimensional, 92122151
flat, 93109
tic-tac-toe, 93
Klein, Felix, 90
knot, 216
alternating, 248, 281
composite, 221
equivalent, 217
figure eight, 220, 227 $240,249,261,302$
350, 357
invariant, 240, 269 278
left or right handed, 313
mirror image, 219
non-alternating, 248 269280
non-trivial, 218365
oriented, 232 243 286
prime, 221
projection, 217
square, 236
trefoil, 218, 242, 253, 271, 281, 286, 312
363
trivial, 218
lattice
configuration, 262
number, 263
line, 6
geodesic, 186192
straight, 8
link, 216
alternating, 248
Brunnian, 265
component, 217
Hopf, 219,275350357367
invariant, 272
oriented, 244 277
reduced, 248
trivial, 218 265
Whitehead, 350 357
linking number, 287
longitude, $78,148,199$
loop, 67
non-separating, 147
unshrinkable, 68
Lord Kelvin, 222,296
Möbius
ladder, 308315329376
strip, 88 335,376
manifold, 71
1-manifold, 85
2-manifold, 7191128
3-manifold, 72120151
n-manifold, 71
flat, 109171
turn, 127
mathematical model, 355
Maxwell, James, 223
meridian, 78148
mirror reversed, 87
Mislow, Kurt, 318
molecule, 291 311329361
non-orientable, 89141
orientable, 89127141
(p, q)-curve, 79
P^{1}, see also projective space, 1-dimensional, 107
P^{2}, see also projective plane, 2-dimensional, 96
P^{3}, see also projective space, 3-dimensional, 100
parallel, 190
path
orientation reversing, 89147
shortest, 858186
straightest, 8
Perko pair, 240
Perko, Kenneth, 240
plane, 5
flat, 450
hyperbolic, 201
point
at infinity, 75
polynomial
$X-, 270$ 277 313
bracket, 270313
Jones, 279314
product, 157
geometric, 170, 203
projective plane, 96 139 207
projective space
1-dimensional, 107
3-dimensional, 100151
property
extrinsic, 50102216
geometric, 52,109339343
global, $6 9 \longdiv { 7 0 }$
local, 69
topological, 67 144,240339
protein, 216 361
backbone, 361
Pythagorean Theorem, 192
$\mathbb{R}^{2}, 13$ see also plane
$\mathbb{R}^{3}, 13$
$\mathbb{R}^{4}, 2134$
$\mathbb{R}^{n}, 71$
recombination, 333
product, 349
Reidemeister moves, 224272
Reidemeister's Theorem, 225241
Reidemeister, Kurt, 224
repeats
direct, 359
inverted, 359
replication, 332346
right angle, 41
rigid motion, 52, 293, 300,339
rubber glove
Euclidean, 301
topological, 305
S^{1}, 13 see also circle
$S^{2}, 13$ see also sphere, 2 -sphere
S^{3},20 see also sphere, 3 -sphere
saddle surface, 60
Seifert surface, 252
sidedness
1-sided, 102
2-sided, 102,252
Simon, Jon, 316
space, 8
sphere, 5
2-sphere, 22
3-sphere, 21
state model, 283
stereographic projection, 75
stick number, 261
supercoil, 334
negatively supercoiled, 345
positively supercoiled, 345
stable, 334
unstable, 334
symmetry
3 -fold, 326
mirror image, 291
synaptic complex, 348
$T^{2}, 13$ see also torus, 2-torus
$T^{3}, 19$ see also torus, 3-torus
Tait's Conjectures, 248
Tait, Peter Guthrie, 222, 248
tangle, 350
0 -tangle, 350
∞-tangle, 351
equation, 356
equivalent, 350
integer, 351
numerator closure, 354
rational, 353
recombination, 356
site, 355
substrate, 355
sum, 354
vector, 352
tetrahedron, 42
topology
extrinsic, 64,217347
intrinsic, 66 91217
torus, 5
2-holed, 568137148
2-torus, 22
3-holed, 5137
3-torus, 1962120
curved, 1550102
extended diagram, 18
flat, 15 6192107109
knotted, 65
unknotted, 65
triangle,42
complementary, 194
congruent, 210
equilateral,42
hyperbolic, 201
isosceles right, 195
planar, 61 110
spherical, 194
tricolorable, 228, 242
twist, 351
horizontal, 352
negative, 351
positive, 276 351
vertical, 352
Uniformization of Surfaces, 209
universe, 37
1-dimensional, 31
2-dimensional, 531
3-dimensional, 831
4-dimensional, 31
infinite-dimensional, 31
unknot, 218
unknotting number, 258365
unlink, 218
vertex, 315
distance, 321
valence, 321
Walba, David, 315
writhe, 244277313,339
average, 339

This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook.

The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material.

The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.

For additional information and updates on this book, visit www.ams.org/bookpages/mbk-96

AMS on the Web www.ams.org

