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Preface

There are a quite a few excellent topology textbooks written for undergraduate
mathematics majors in their junior or senior year of college. Such books usually
begin with an introduction to point set topology, followed by geometric topics such
as homotopy, covering spaces, knot theory, the classification of surfaces, or some
area of applied topology. While not all undergraduate topology texts follow this
precise structure, almost all presuppose experience with proofs and exposure to a
rigorous definition of continuity. For math departments that do not have a large
number of majors or have an inordinate burden of service courses to teach, offering
a topology course which presupposes such a background is almost impossible. As a
result, many mathematics majors graduate without having the opportunity to take
a topology class.

In addition to textbooks written for math majors, there are a number of note-
worthy intuitive introductions to topology intended for a wider audience. Such
books are great for curious students and for the general public, but can be difficult
to teach out of because they rarely include definitions, statements of theorems, or
a sufficient number of elementary exercises (without solutions in the back).

What seems to be absent from the available topology books is one that is easy
to teach from, includes a wide range of topics, has no prerequisites, and makes no
assumptions about the mathematical sophistication or motivation of the reader.
Such a book could be the basis for a course that would attract students to the
math major who might not be excited by the analytical and algebraic arguments
that they typically see in their math courses during the first two years of college.

This book is intended to fill this gap. It is an elementary introduction to
geometric topology and its applications to chemistry, molecular biology, and cos-
mology. It does not assume any particular mathematical or scientific background,
sophistication, or even motivation to study abstract mathematics. It is meant to be
fun and engaging while at the same time drawing students in to learn about funda-
mental topological and geometric ideas. Though the book can be read and enjoyed
by non-mathematicians, college students, or even eager high school students, it is
intended to be used as an undergraduate textbook.

With this in mind, all of the concepts are introduced with explicit definitions
and the theorems are clearly stated so that it is easy for an instructor to develop
lectures and for students to refer to when doing the homework. Some theorems
are proved formally, others are proved intuitively, and for those results that aren’t
proved, students are told in which advanced course they might expect to see a
proof. In addition, each chapter concludes with numerous exercises which are at a
level appropriate for students in their first two years of college, and whose solutions
are only available to instructors.

xi
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In contrast with most topology textbooks, the style of the book is informal
and lively. Though all of the definitions and theorems are explicitly stated, they
are given in an intuitive rather than a rigorous form. For example, rather than
introducing the formal definition of an isotopy, two knots are defined to be equiva-
lent if one can be deformed to the other. This style of presentation allows students
to develop intuition about topology and geometry without getting bogged down
in technical details. In addition, the topics in the book were chosen for their vi-
sual appeal, which is highlighted by the abundance of illustrations throughout.
In order to make the text more fun and engaging, early on it introduces a cast
of characters who reappear in multiple chapters. This includes the 1-dimensional
character A. Dash, the 2-dimensional characters A. Square and B. Triangle, and
the 3-dimensional character A. 3D-Girl, each of whom is learning about geometry
and topology in order to understand his or her own universe. The characters are
illustrated with amusing pictures that entice readers to think about the experience
from the character’s point of view.

The book is divided into three parts corresponding to the three areas referred to
in the title. Part 1, consisting of Chapters 1–8, concerns two and three dimensional
universes, though there is a brief foray into the fourth dimension in Chapter 2. The
goal of Part 1 is to develop techniques that enable creatures in a given space to
visualize possible shapes for their universe, and to use topological and geometric
properties to distinguish one such space from another.

The second part of the text, consisting of Chapters 9–11, provides an introduc-
tion to knots and links. Building on the ideas developed in Part 1, the emphasis in
Part 2 is on deformations of knots and links, and the use of invariants to distinguish
inequivalent knots and links. Tricolorability is introduced in Chapter 9 as an in-
variant which is relatively simple to understand and apply but does not distinguish
many knots. Then Chapter 10 surveys a collection of invariants which are not hard
to understand but in some cases are hard to compute, and in the exercises we ask
the reader to figure out what invariants should be used to distinguish a given pair
of knots or links. Finally, Chapter 11 introduces the Kauffman bracket and Jones
polynomial, and provides a step-by-step explanation of how to compute them, as
well as some theorems that illustrate their power.

The third part of the text, consisting of Chapters 12–15, presents applications of
topology and geometry to chemistry and molecular biology. In particular, Chapter
12 compares the concepts of mirror image symmetry from geometric, topological,
and chemical viewpoints. It also introduces the idea of using embeddings of graphs
in 3-dimensional space as models of non-rigid molecules. Then Chapter 13 presents
techniques that can be used to show that some non-rigid molecules are topologically
distinct from their mirror images. Chapter 14 explores the topology and geometry
of DNA, developing material about rational tangles as a way to model DNA recom-
bination. Finally, Chapter 15 describes topologically complex protein structures,
giving examples of knotted and linked proteins, as well as proteins containing non-
planar graphs. While Chapter 13 depends on Chapter 12, Chapters 14 and 15 are
independent of one another and of Chapters 12 and 13. Thus an instructor can
choose which of the applied topics they would like to cover.

The three parts of the book make it usable as a textbook for several different
types of courses. For example, Part 1 of the book could be the basis for a seminar
for first year college students on a topic such as “Dimensions and the Shape of
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the Universe.” Since the book is written with students in mind, the instructor
could give daily reading assignments and then lead the class in a discussion of the
material followed by breaking the class into small groups to work through some
of the exercises. Such a seminar would also lend itself well to open ended writing
projects on diverse topics: Describe a sport that could take place in a 2-dimensional
universe. Pick a well-known game (for example chess, checkers, Othello, Hex, or
Go), and explain how the strategy for the game would change if it were played on
a flat torus or a flat Klein bottle. Design a 4-dimensional version of such a game,
and explain how the strategy compares to the usual 2- or 3-dimensional version.
Imagine the form of a 4-dimensional person, and explain what we would see if the
person passed through our space in different ways. If we had a spaceship that could
travel in any direction as fast and far as we would like, what evidence should the
spaceship seek to help us figure out the shape of our universe? These are a few of
the topics.

The book could serve as the text for a topology course for math majors with or
without prerequisites. The instructor could either cover all three parts of the text,
or pick and choose topics from each of the three parts and supplement with point set
topics from a more traditional topology text. Another option for a course for math
majors would be for the instructor to give lectures to introduce each chapter, and
then have students take turns giving lectures on each section within a chapter. The
sections were intentionally made short to enable students to read and understand
a single section at a time.

The text could also be used for an interdisciplinary course linking topology
with molecular biology and chemistry. In this case, the course would focus on
Part 2 and Part 3 (comprising Chapters 9–15). Part 2 would give students enough
background in knot theory to understand the applications to molecular symmetry
and the topology of DNA and proteins developed in Part 3. Note that it is not
necessary for students to read Part 1 in order to understand Part 2, nor is it
necessary for students to have a background in biology or chemistry in order to
understand Part 3.

A geometry course for future teachers could also be based on this text. Such
courses often consist of an axiomatic approach to Euclidean and non-Euclidean ge-
ometry. However, approaching geometry this way can be tedious and may actually
kill any natural interest the student has in geometry. By contrast, a course for fu-
ture teachers based on this text would focus on developing geometric thinking and
visual intuition together with problem solving and mathematical reasoning. Such
a course would cover Part 1, culminating in Chapter 8 which presents Euclid’s five
Axioms and alternatives to the Fifth Axiom that are valid on a sphere and a hy-
perbolic plane. The instructor for such a course would want to present the material
slowly in order to emphasize visualization and logical deduction throughout. The
nearly 450 illustrations in the text are designed to help students develop their visual
intuition, and the many exercises at the end of each chapter would give students
necessary practice writing mathematical arguments. Furthermore, the exercises
are designed to encourage students to explain their reasoning in complete sentences
and integrate illustrations into their explanations whenever possible. This course
could culminate with a project such as designing a museum exhibit featuring the
student’s choice of the ten most important images from the text with an introduc-
tion to the exhibit and short explanatory descriptions associated with each image.
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The students could also be asked to include some 3-dimensional models constructed
themselves.

Finally, because the text is readable by students and is self-contained, the book
would be well suited for an independent study or senior year project. Also, because
of its lack of prerequisites and its division into three parts and the subdivision of
each chapter into short sections, it would work well as the textbook for a four-week
winter term or a summer course.

We hope that at least in some small way this book contributes to one or more
of the following large goals: it motivates some undergraduates to major in math; it
motivates some math majors to study topology; it motivates some math students
to read their textbooks; it convinces some future K–12 teachers that geometry is
fun; or it convinces some future scientists, administrators, or government officials
that even the purest areas of mathematics can have important applications. At the
very least, we hope that you and your students enjoy reading it.
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geometrically, 294, 311

intrinsically, 325

topologically, 306, 311

circle, 6

great, 9, 58

circumference, 197

commutative, 137, 153

cone point, 114, 209

cone, infinite, 26

connected sum

of knots, 220, 233, 249

of surfaces, 203, 255

continued fraction, 353

Conway, John H., 353

cross-cap, 100, 142

crossing

negative (left-handed), 243, 313

nugatory, 247

overcrossing, 270, 293, 351
positive (right-handed), 243, 313

resolving, 271

split (A-split or B-split), 283

splitting, 282

undercrossing, 217, 243, 270, 293

crossing number, 218, 241, 269, 281
cube, 19

0-dimensional, 36

1-dimensional, 36

2-dimensional, 36

3-dimensional, 36, 173
4-dimensional, 40, 179

n-dimensional, 47

solid, 41

cut and paste, 140

cycloid, 378
cylinder, 15

Connect Four, 15

curved, 62

finite, 31

flat, 62
infinite, 6, 62, 110

slanted, 46

D2, 13, see also disk

dimension, 6, 13

disk, 7, 21, 59, 96
open, 74

distance, 31, 50

distributive, 183

DNA, 216, 292, 297, 312, 330

axis, 335
backbone, 332

base pairs, 331

duplex, 331

overwound, 346

relaxed, 331, 335

site, 335, 348
stressed, 331

substrate, 348

383
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twist, 340

underwound, 346

Einstein-Rosen bridge, 106, 135

enzyme, 347
ball, 355

recombinase, 348
Euler characteristic, 144, 257

Euler, Leonhard, 144
extended diagram, 17, 61, 93

Flatland, 5

genus, 148

of a knot, 254
of a Seifert surface, 254

geodesic, 53, 174
Geometrization Conjecture, 153
geometry

Euclidean, 191
extrinsic, 52, 293

intrinsic, 52, 91, 109
local, 70, 180

spherical, 197
gluing, 13

abstractly glued, 15, 62
gluing diagram, 13, 61, 88, 109, 138, 145

hexagonal, 110, 154, 208

octagonal, 128, 206
polygonal, 111, 205

polyhedral, 122
graph, 294, 298, 311

complete, 322
complete bipartite, 322
embedding, 320, 370, 376

non-planar, 361, 376

handedness (left and right handed), 291,
301

handle, 6, 141
adding, 252

hemisphere, 13, 84, 97
homogeneous, 71, 92, 109, 181, 185, 205

I, see also interval, 160
identity element, 137, 220

induction, 147, 154
inverse, 138, 153

isotropic, 181

Jones, Vaughan, 279

K2, see also Klein bottle, 91

K3, see also Klein bottle, 3-dimensional, 92
Klein bottle, 90, 113, 145

3-dimensional, 92, 122, 151

flat, 93, 109
tic-tac-toe, 93

Klein, Felix, 90
knot, 216

alternating, 248, 281

composite, 221
equivalent, 217

figure eight, 220, 227, 240, 249, 261, 302,
350, 357

invariant, 240, 269, 278

left or right handed, 313
mirror image, 219
non-alternating, 248, 269, 280

non-trivial, 218, 365
oriented, 232, 243, 286

prime, 221
projection, 217

square, 236
trefoil, 218, 242, 253, 271, 281, 286, 312,

363

trivial, 218

lattice
configuration, 262

number, 263
line, 6

geodesic, 186, 192
straight, 8

link, 216

alternating, 248
Brunnian, 265

component, 217
Hopf, 219, 275, 350, 357, 367

invariant, 272
oriented, 244, 277

reduced, 248
trivial, 218, 265
Whitehead, 350, 357

linking number, 287
longitude, 78, 148, 199

loop, 67
non-separating, 147

unshrinkable, 68
Lord Kelvin, 222, 296

Möbius

ladder, 308, 315, 329, 376
strip, 88, 335, 376

manifold, 71
1-manifold, 85

2-manifold, 71, 91, 128
3-manifold, 72, 120, 151
n-manifold, 71

flat, 109, 171
turn, 127

mathematical model, 355
Maxwell, James, 223

meridian, 78, 148
mirror reversed, 87

Mislow, Kurt, 318
molecule, 291, 311, 329, 361

non-orientable, 89, 141
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orientable, 89, 127, 141

(p, q)-curve, 79

P 1, see also projective space,
1-dimensional, 107

P 2, see also projective plane,
2-dimensional, 96

P 3, see also projective space,
3-dimensional, 100

parallel, 190
path

orientation reversing, 89, 147
shortest, 8, 58, 186
straightest, 8

Perko pair, 240
Perko, Kenneth, 240
plane, 5

flat, 4, 50
hyperbolic, 201

point
at infinity, 75

polynomial
X-, 270, 277, 313
bracket, 270, 313
Jones, 279, 314

product, 157
geometric, 170, 203

projective plane, 96, 139, 207
projective space

1-dimensional, 107
3-dimensional, 100, 151

property
extrinsic, 50, 102, 216
geometric, 52, 109, 339, 343
global, 69, 70
local, 69
topological, 67, 144, 240, 339

protein, 216, 361
backbone, 361

Pythagorean Theorem, 192

R
2, 13, see also plane

R
3, 13

R
4, 21, 34

R
n, 71

recombination, 333
product, 349

Reidemeister moves, 224, 272
Reidemeister’s Theorem, 225, 241
Reidemeister, Kurt, 224
repeats

direct, 359
inverted, 359

replication, 332, 346
right angle, 41
rigid motion, 52, 293, 300, 339
rubber glove

Euclidean, 301
topological, 305

S1, 13, see also circle

S2, 13, see also sphere, 2-sphere

S3, 20, see also sphere, 3-sphere

saddle surface, 60

Seifert surface, 252

sidedness

1-sided, 102

2-sided, 102, 252

Simon, Jon, 316

space, 8

sphere, 5

2-sphere, 22

3-sphere, 21

state model, 283

stereographic projection, 75

stick number, 261

supercoil, 334

negatively supercoiled, 345

positively supercoiled, 345

stable, 334

unstable, 334

symmetry

3-fold, 326

mirror image, 291

synaptic complex, 348

T 2, 13, see also torus, 2-torus

T 3, 19, see also torus, 3-torus

Tait’s Conjectures, 248

Tait, Peter Guthrie, 222, 248

tangle, 350

0-tangle, 350

∞-tangle, 351

equation, 356

equivalent, 350

integer, 351

numerator closure, 354

rational, 353

recombination, 356

site, 355

substrate, 355

sum, 354

vector, 352

tetrahedron, 42

topology

extrinsic, 64, 217, 347

intrinsic, 66, 91, 217

torus, 5

2-holed, 5, 68, 137, 148

2-torus, 22

3-holed, 5, 137

3-torus, 19, 62, 120

curved, 15, 50, 102

extended diagram, 18

flat, 15, 61, 92, 107, 109

knotted, 65

unknotted, 65

triangle, 42
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complementary, 194
congruent, 210
equilateral, 42
hyperbolic, 201
isosceles right, 195
planar, 61, 110
spherical, 194

tricolorable, 228, 242
twist, 351

horizontal, 352
negative, 351
positive, 276, 351
vertical, 352

Uniformization of Surfaces, 209
universe, 3, 7

1-dimensional, 31
2-dimensional, 5, 31
3-dimensional, 8, 31
4-dimensional, 31
infinite-dimensional, 31

unknot, 218
unknotting number, 258, 365
unlink, 218

vertex, 315
distance, 321
valence, 321

Walba, David, 315
writhe, 244, 277, 313, 339

average, 339
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applications of topology and geometry to molecular symmetries, DNA, and 
proteins. Each chapter ends with exercises that allow for better understanding 
of the material.

���
��	�
��
���
����
�
�������	
���
	���	��
������
�		
��
���
���
������
���

�������
 ���
 �$�	����	�
 ������
 ����
 ���
 �����
 ��
 ��
 ���������
 ������
 ����
 �

�������
�����
 ���
�����	
�������
��
�
����
�		��������
���
�$��������
���

�		� 
 ������
 ��
 ����	��
 ���������
 �����
 ����	���
 ���
 ��������
  ������

getting bogged down in technical details.
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