Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Introduction to Tropical Geometry

About this Title

Diane Maclagan, University of Warwick, Coventry, United Kingdom and Bernd Sturmfels, University of California, Berkeley, Berkeley, CA

Publication: Graduate Studies in Mathematics
Publication Year: 2015; Volume 161
ISBNs: 978-0-8218-5198-2 (print); 978-1-4704-2221-9 (online)
DOI: https://doi.org/10.1090/gsm/161
MathSciNet review: MR3287221
MSC: Primary 14T05; Secondary 05B35, 14M25, 15A80, 52B70

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • Omini Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff, Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, arXiv:1303.4812, 2013.
  • Federico Ardila and Mike Develin, Tropical hyperplane arrangements and oriented matroids, Math. Z. 262 (2009), no. 4, 795–816.
  • Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49.
  • Federico Ardila, Caroline Klivans, and Lauren Williams, The positive Bergman complex of an oriented matroid, European J. Combin. 27 (2006), no. 4, 577–591.
  • Lars Allermann and Johannes Rau, First steps in tropical intersection theory, Math. Z. 264 (2010), no. 3, 633–670.
  • Martin Aigner and Günter M. Ziegler, Proofs from The Book, third ed., Springer-Verlag, Berlin, 2004.
  • Matthew Baker, An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves, $p$-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 123–174.
  • —, Specialization of linear systems from curves to graphs, Algebra Number Theory 2 (2008), no. 6, 613–653.
  • François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat, Synchronization and linearity: An algebra for discrete event systems, John Wiley & Sons Ltd., Chichester, 1992.
  • George M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459–469.
  • D. N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1–4.
  • Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195.
  • José Ignacio Burgos Gil and Martín Sombra, When do the recession cones of a polyhedral complex form a fan?, Discrete Comput. Geom. 46 (2011), no. 4, 789–798.
  • Louis Billera, Susan Holmes, and Karen Vogtmann, Geometry of the space of phylogenetic trees, Adv. in Appl. Math. 27 (2001), no. 4, 733–767.
  • Tristram Bogart, Anders N. Jensen, David Speyer, Bernd Sturmfels, and Rekha R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73.
  • Alexander Barvinok, David S. Johnson, Gerhard Woeginger, and Russell Woodroofe, The maximum traveling salesman problem under polyhedral norms, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 1412, Springer, Berlin, 1998, pp. 195–201.
  • Matthew Baker and Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), no. 2, 766–788.
  • Robert Bieri, Walter D. Neumann, and Ralph Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477.
  • Siegfried Bosch, Lectures on formal and rigid geometry, Available at www.math.uni-muenster.de/sfb/about/publ/heft378.pdf.
  • Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.
  • Matthew Baker, Sam Payne, and Joseph Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, arXiv:1104.0320, 2011.
  • Robert Bieri and Ralph Strebel, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3) 41 (1980), no. 3, 439–464.
  • Jürgen Bokowski and Bernd Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics, vol. 1355, Springer, Heidelberg, 1989.
  • Peter Butkovič, Max-linear Systems: Theory and Algorithms, Springer Monographs in Mathematics, Springer-Verlag, London, 2010.
  • Filip Cools, Jan Draisma, Sam Payne, and Elina Robeva, A tropical proof of the Brill-Noether theorem, Adv. Math. 230 (2012), no. 2, 759–776.
  • Guy Cohen, Stéphane Gaubert, Jean-Pierre Quadrat, and Ivan Singer, Max-plus convex sets and functions, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 105–129.
  • Melody Chan, Anders Jensen, and Elena Rubei, The $4 {\times } 4$ minors of a $5 {\times } n$ matrix are a tropical basis, Linear Algebra Appl. 435 (2011), no. 7, 1598–1611.
  • David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, third ed., Undergraduate Texts in Mathematics, Springer, New York, 2007.
  • David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
  • Andrew J. Chan and Diane Maclagan, Gröbner bases over fields with valuations, arXiv:1303.0729, 2013.
  • David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17–50.
  • Dustin Cartwright and Sam Payne, Connectivity of tropicalizations, Math. Res. Lett. 19 (2012), no. 5, 1089–1095.
  • Maria Angelica Cueto, Implicitization of surfaces via geometric tropicalization, arXiv:1105.0509, 2011.
  • Lucia Caporaso and Filippo Viviani, Torelli theorem for graphs and tropical curves, Duke Math. J. 153 (2010), no. 1, 129–171.
  • Corrado De Concini and Claudio Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459–494.
  • Alicia Dickenstein, Eva Maria Feichtner, and Bernd Sturmfels, Tropical discriminants, J. Amer. Math. Soc. 20 (2007), no. 4, 1111–1133.
  • Vladimir I. Danilov and Askold G. Khovanskiĭ, Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 5, 925–945.
  • Igor Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, vol. 296, Cambridge University Press, 2003.
  • Jesús De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Springer-Verlag, 2010.
  • Mike Develin and Bernd Sturmfels, Tropical convexity, Doc. Math. 9 (2004), 1–27.
  • Mike Develin, Francisco Santos, and Bernd Sturmfels, On the rank of a tropical matrix, Combinatorial and computational geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge Univ. Press, 2005, pp. 213–242.
  • Andreas Dress and Walter Wenzel, Valuated matroids, Adv. Math. 93 (1992), 214–250.
  • Mike Develin and Josephine Yu, Tropical polytopes and cellular resolutions, Experiment. Math. 16 (2007), no. 3, 277–291.
  • Alexandre Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11, 167.
  • —, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
  • David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995,
  • Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157.
  • Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.
  • Günter Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer-Verlag, New York, 1996.
  • Eva Maria Feichtner, De Concini-Procesi wonderful arrangement models: a discrete geometer’s point of view, Combinatorial and computational geometry, MSRI Publ., vol. 52, Cambridge Univ. Press, 2005, pp. 333–360.
  • Alex Fink, Tropical cycles and Chow polytopes, Beitr. Algebra Geom. 54 (2013), no. 1, 13–40.
  • Georges François and Johannes Rau, The diagonal of tropical matroid varieties and cycle intersections, Collect. Math. 64 (2013), no. 2, 185–210.
  • William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353.
  • Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468.
  • William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry.
  • —, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998.
  • Eva Maria Feichtner and Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), no. 3, 515–536.
  • I. M. Gel′fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987), no. 3, 301–316.
  • Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes — Combinatorics and Computation (Gil Kalai and Günter M. Ziegler, eds.), Birkhäuser, 2000, pp. 43–74.
  • Israel M. Gel′fand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 2008.
  • Andreas Gathmann and Hannah Markwig, The Caporaso-Harris formula and plane relative Gromov-Witten invariants in tropical geometry, Math. Ann. 338 (2007), no. 4, 845–868.
  • —, The numbers of tropical plane curves through points in general position, J. Reine Angew. Math. 602 (2007), 155–177.
  • —, Kontsevich’s formula and the WDVV equations in tropical geometry, Adv. Math. 217 (2008), no. 2, 537–560.
  • Angela Gibney and Diane Maclagan, Equations for Chow and Hilbert quotients, Algebra Number Theory 4 (2010), no. 7, 855–885.
  • Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2011.
  • Mark Gross and Bernd Siebert, An invitation to toric degenerations, Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, vol. 16, Int. Press, Somerville, MA, 2011, pp. 43–78.
  • Walter Gubler, A guide to tropicalizations, Algebraic and Combinatorial Aspects of Tropical Geometry, Contemporary Mathematics, vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125–189.
  • Paul Hacking, The homology of tropical varieties, Collect. Math. 59 (2008), no. 3, 263–273.
  • Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
  • Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995.
  • Allen Hatcher, Algebraic topology, Cambridge University Press, 2002.
  • Sven Herrmann and Michael Joswig, Splitting polytopes, Münster J. Math. 1 (2008), 109–141.
  • Sven Herrmann, Anders Jensen, Michael Joswig, and Bernd Sturmfels, How to draw tropical planes, Electron. J. Combin. 16 (2009), no. 2, R6.
  • Sven Herrmann, Michael Joswig, and David Speyer, Dressians, tropical Grassmannians, and their rays, Forum Mathematicum, 6 (2014). 1853–1882.
  • David Helm and Eric Katz, Monodromy filtrations and the topology of tropical varieties, Canad. J. Math. 64 (2012), no. 4, 845–868.
  • June Huh and Eric Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann. 354 (2012), no. 3, 1103–1116.
  • Jan E. Holly, Pictures of ultrametric spaces, the $p$-adic numbers, and valued fields, Amer. Math. Monthly 108 (2001), no. 8, 721–728.
  • Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64 (1995), no. 212, 1541–1555.
  • Mark Haiman and Bernd Sturmfels, Multigraded Hilbert schemes, J. Algebraic Geom. 13 (2004), no. 4, 725–769.
  • Kerstin Hept and Thorsten Theobald, Tropical bases by regular projections, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2233–2241.
  • Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York, 1980, Reprint of the 1974 original.
  • Ilia Itenberg, Grigory Mikhalkin, and Eugenii Shustin, Tropical algebraic geometry, Oberwolfach Seminars, vol. 35, Birkhäuser Verlag, Basel, 2007.
  • Anders N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties, Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.
  • Michael Joswig and Katja Kulas, Tropical and ordinary convexity combined, Adv. Geom. 10 (2010), no. 2, 333–352.
  • Mattias Jonsson, Degenerations of amoebae and Berkovich spaces, arXiv:1406.1430, 2014.
  • Michael Joswig, Essentials of tropical combinatorics, Book in preparation.
  • Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser, Boston, MA, 1983.
  • Michael Joswig, Bernd Sturmfels, and Josephine Yu, Affine buildings and tropical convexity, Albanian J. Math. 1 (2007), no. 4, 187–211.
  • Anders Jensen and Josephine Yu, Stable intersections of tropical varieties, arXiv:1309.7064, 2013.
  • Takeshi Kajiwara, Tropical toric geometry, Toric topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 197–207.
  • Mikhail M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110.
  • Richard M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978), no. 3, 309–311.
  • Kiran S. Kedlaya, The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3461–3470.
  • Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574.
  • A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31.
  • Mikhail Kapranov, Bernd Sturmfels, and Andrei Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), no. 1, 189–218.
  • Harold W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart. 2 (1955), 83–97.
  • A. G. Kušnirenko, Newton polyhedra and Bezout’s theorem, Funkcional. Anal. i Priložen. 10 (1976), no. 3, 82–83.
  • Joachim Kock and Israel Vainsencher, An invitation to quantum cohomology, Progress in Mathematics, vol. 249, Birkhäuser, Boston, MA, 2007.
  • Mark Luxton and Zhenhua Qu, Some results on tropical compactifications, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4853–4876.
  • Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
  • Diane Maclagan, Antichains of monomial ideals are finite, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1609–1615.
  • Thomas Markwig, A field of generalised Puiseux series for tropical geometry, Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), no. 1, 79–92.
  • Grigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004), no. 5, 1035–1065.
  • —, Enumerative tropical algebraic geometry in $\Bbb R^ 2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377.
  • Grigory Mikhalkin and Johannes Rau, Tropical geometry, Book in preparation.
  • Grigory Mikhalkin and Hans Rullgård, Amoebas of maximal area, Internat. Math. Res. Notices (2001), no. 9, 441–451.
  • Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.
  • Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230.
  • Takeo Nishinou and Bernd Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1–51.
  • Mounir Nisse and Frank Sottile, The phase limit set of a variety, Algebra Number Theory 7 (2013), no. 2, 339–352.
  • Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15, Springer-Verlag, Berlin, 1988.
  • Brian Osserman and Sam Payne, Lifting tropical intersections, Doc. Math. 18 (2013), 121–175.
  • James Oxley, Matroid theory, Graduate Texts in Mathematics, vol. 21, Oxford University Press, 2011.
  • Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co. Inc., Melbourne, FL, 1985.
  • Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3, 543–556.
  • —, Fibers of tropicalization, Math. Z. 262 (2009), no. 2, 301–311.
  • —, Erratum to: Fibers of tropicalization, Math. Z. 272 (2012), no. 3-4, 1403–1406.
  • —, Boundary complexes and weight filtrations, Michigan Math. J. 62 (2013), no. 2, 293–322.
  • Jean-Eric Pin, Tropical semirings, Idempotency (Bristol, 1994), Publ. Newton Inst., vol. 11, Cambridge Univ. Press, 1998, pp. 50–69.
  • Bjorn Poonen, Maximally complete fields, Enseign. Math. (2) 39 (1993), no. 1-2, 87–106.
  • Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), no. 3, 481–507.
  • Lior Pachter and Bernd Sturmfels, Tropical geometry of statistical models, Proc. Natl. Acad. Sci. USA 101 (2004), no. 46, 16132–16137.
  • Lior Pachter and Bernd Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge University Press, 2005.
  • Mikael Passare and August Tsikh, Amoebas: their spines and their contours, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 275–288.
  • Kevin Purbhoo, A nullstellensatz for amoebas, Duke Math. J. 141 (2008), no. 3, 407–445.
  • Joseph Rabinoff, Tropical analytic geometry, Newton polygons, and tropical intersections, Adv. Math. 229 (2012), no. 6, 3192–3255.
  • Richard Rado, A theorem on independence relations, Quart. J. Math., Oxford Ser. 13 (1942), 83–89.
  • Jörg Rambau, TOPCOM: triangulations of point configurations and oriented matroids, Mathematical software (Beijing, 2002), World Sci. Publ., River Edge, NJ, 2002, pp. 330–340.
  • Miles Reid, Undergraduate algebraic geometry, London Mathematical Society Student Texts, vol. 12, Cambridge University Press, 1988.
  • Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89.
  • Paulo Ribenboim, The theory of classical valuations, Springer Monographs in Mathematics, Springer-Verlag, New York, 1999.
  • Felipe Rincón, Computing tropical linear spaces, J. Symbolic Comput. 51 (2013), 86–98.
  • Tim Römer and Kirsten Schmitz, Generic tropical varieties, J. Pure Appl. Algebra 216 (2012), no. 1, 140–148.
  • Qingchun Ren, Steven V. Sam, and Bernd Sturmfels, Tropicalization of classical moduli spaces, Math. Comput. Sci. 8 (2014), no. 2, 119–145.
  • Pierre Samuel, À propos du théorème des unités, Bull. Sci. Math. (2) 90 (1966), 89–96.
  • Francisco Santos, The Cayley trick and triangulations of products of simplices, Integer points in polyhedra—geometry, number theory, algebra, optimization, Contemp. Math., vol. 374, Amer. Math. Soc., Providence, RI, 2005, pp. 151–177.
  • Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Math. and its Applications, vol. 44, Cambridge University Press, 1993.
  • Kristin M. Shaw, A tropical intersection product in matroidal fans, SIAM J. Discrete Math. 27 (2013), no. 1, 459–491.
  • Yaroslav Shitov, When do the $r$-by-$r$ minors of a matrix form a tropical basis?, J. Combin. Theory Ser. A 120 (2013), no. 6, 1166–1201.
  • Imre Simon, Recognizable sets with multiplicities in the tropical semiring, Mathematical foundations of computer science, 1988 (Carlsbad, 1988), Lecture Notes in Comput.Sci., vol. 324, Springer, Berlin, 1988, pp. 107–120.
  • David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411.
  • Bernd Sturmfels and Jenia Tevelev, Elimination theory for tropical varieties, Math. Res. Lett. 15 (2008), no. 3, 543–562.
  • Reinhard Steffens and Thorsten Theobald, Combinatorics and genus of tropical intersections and Ehrhart theory, SIAM J. Discrete Math. 24 (2010), no. 1, 17–32.
  • Richard P. Stanley, Combinatorics and commutative algebra, second ed., Progress in Mathematics, vol. 41, Birkhäuser, Boston, MA, 1996.
  • —, Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, 2012.
  • Ralph Strebel, Finitely presented soluble groups, Group theory, Academic Press, London, 1984, pp. 257–314.
  • Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
  • —, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2002.
  • Bernd Sturmfels, Jenia Tevelev, and Josephine Yu, The Newton polytope of the implicit equation, Mosc. Math. J. 7 (2007), no. 2, 327–346.
  • Bernd Sturmfels and Josephine Yu, Tropical implicitization and mixed fiber polytopes, Software for algebraic geometry, IMA Vol. Math. Appl., vol. 148, Springer, New York, 2008, pp. 111–131.
  • Jenia Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104.
  • —, On a question of B. Teissier, Collect. Math. 65 (2014), no. 1, 61–66.
  • Thorsten Theobald, Computing amoebas, Experiment. Math. 11 (2002), no. 4, 513–526 (2003).
  • Ilya Tyomkin, Tropical geometry and correspondence theorems via toric stacks, Math. Ann. 353 (2012), no. 3, 945–995.
  • Ravi Vakil, Foundations of algebraic geometry, Available at http://math216.wordpress.com/, 2013.
  • Magnus Dehli Vigeland, Smooth tropical surfaces with infinitely many tropical lines, Ark. Mat. 48 (2010), no. 1, 177–206.
  • Oleg Viro, From the sixteenth Hilbert problem to tropical geometry, Japan J. Math. 3 (2008), no. 2, 185–214.
  • D. J. A. Welsh, Matroid theory, Academic Press, London, 1976, L.M.S. Monographs, No. 8.
  • Neil White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, 1986.
  • Neil White (ed.), Combinatorial geometries, Encyclopedia of Mathematics and its Applications, vol. 29, Cambridge University Press, 1987.
  • Neil White (ed.), Matroid applications, Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge University Press, 1992.
  • Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.