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Preface

Traditionally, Fourier analysis has been focused on the analysis of functions
in terms of linear phase functions such as the sequence n �→ e(αn) := e2πiαn.
In recent years, though, applications have arisen—particularly in connection
with problems involving linear patterns such as arithmetic progressions—in
which it has been necessary to go beyond the linear phases, replacing them
to higher order functions such as quadratic phases n �→ e(αn2). This has
given rise to the subject of quadratic Fourier analysis and, more generally,
to higher order Fourier analysis.

The classical results of Weyl on the equidistribution of polynomials (and
their generalisations to other orbits on homogeneous spaces) can be inter-
preted through this perspective as foundational results in this subject. How-
ever, the modern theory of higher order Fourier analysis is very recent in-
deed (and still incomplete to some extent), beginning with the breakthrough
work of Gowers [Go1998], [Go2001] and also heavily influenced by paral-
lel work in ergodic theory, in particular, the seminal work of Host and Kra
[HoKr2005]. This area was also quickly seen to have much in common with
areas of theoretical computer science related to polynomiality testing, and in
joint work with Ben Green and Tamar Ziegler [GrTa2010], [GrTa2008c],
[GrTaZi2010b], applications of this theory were given to asymptotics for
various linear patterns in the prime numbers.

There are already several surveys or texts in the literature (e.g.
[Gr2007], [Kr2006], [Kr2007], [Ho2006], [Ta2007], [TaVu2006]) that
seek to cover some aspects of these developments. In this text (based on a
topics graduate course I taught in the spring of 2010), I attempt to give a
broad tour of this nascent field. This text is not intended to directly substi-
tute for the core papers on the subject (many of which are quite technical
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and lengthy), but focuses instead on basic foundational and preparatory ma-
terial, and on the simplest illustrative examples of key results, and should
thus hopefully serve as a companion to the existing literature on the sub-
ject. In accordance with this complementary intention of this text, we also
present certain approaches to the material that is not explicitly present in
the literature, such as the abstract approach to Gowers-type norms (Section
2.2) or the ultrafilter approach to equidistribution (Section 1.1.3).

There is, however, one important omission in this text that should be
pointed out. In order to keep the material here focused, self-contained,
and of a reasonable length (in particular, of a length that can be mostly
covered in a single graduate course), I have focused on the combinatorial
aspects of higher order Fourier analysis, and only very briefly touched upon
the equally significant ergodic theory side of the subject. In particular, the
breakthrough work of Host and Kra [HoKr2005], establishing an ergodic-
theoretic precursor to the inverse conjecture for the Gowers norms, is not
discussed in detail here; nor is the very recent work of Szegedy [Sz2009],
[Sz2009b], [Sz2010], [Sz2010b] and Camarena-Szegedy [CaSz2010] in
which the Host-Kra machinery is adapted to the combinatorial setting.
However, some of the foundational material for these papers, such as the
ultralimit approach to equidistribution and structural decomposition, or the
analysis of parallelopipeds on nilmanifolds, is covered in this text.

This text presumes a graduate-level familiarity with basic real analysis
and measure theory, such as is covered in [Ta2011], [Ta2010], particularly
with regard to the “soft” or “qualitative” side of the subject.

The core of the text is Chapter 1, which comprises the main lecture
material. The material in Chapter 2 is optional to these lectures, except for
the ultrafilter material in Section 2.1 which would be needed to some extent
in order to facilitate the ultralimit analysis in Chapter 1. However, it is
possible to omit the portions of the text involving ultrafilters and still be able
to cover most of the material (though from a narrower set of perspectives).
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merédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.

[Fu1990] H. Furstenberg, Nonconventional ergodic averages, The legacy of John von Neu-
mann (Hempstead, NY, 1988), 43-56, Proc. Sympos. Pure Math., 50, Amer. Math.
Soc., Providence, RI, 1990.

[FuWi1996] H. Furstenberg, B. Weiss, A mean ergodic theorem for 1/N
∑N

n=1 f(T
nx)

g(Tn2

x). Convergence in ergodic theory and probability (Columbus, OH, 1993), 193-
227, Ohio State Univ. Math. Res. Inst. Publ., 5 de Gruyter, Berlin, 1996.

[GoPiYi2008] D. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples II, Acta Math. 204
(2010), no. 1, 1-47.

[Go1998] W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions
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LNM 225, Springer-Verlag, Berlin–New York, 1971.



182 Bibliography

[KoLuRo1996] Y. Kohayakawa, T. Luczsak, V. Rödl, Arithmetic progressions of length
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112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010

111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010

110 Matthias Kreck, Differential Algebraic Topology, 2010

109 John C. Neu, Training Manual on Transport and Fluids, 2010
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Traditional Fourier analysis, which has been remarkably effective in 
many contexts, uses linear phase functions to study functions. Some 
questions, such as problems involving arithmetic progressions, natu-
rally lead to the use of quadratic or higher order phases. Higher 
order Fourier analysis is a subject that has become very active only 
recently. Gowers, in groundbreaking work, developed many of the 
basic concepts of this theory in order to give a new, quantitative 
proof of Szemerédi’s theorem on arithmetic progressions. However, 
there are also precursors to this theory in Weyl’s classical theory 
of equidistribution, as well as in Furstenberg’s structural theory of 
dynamical systems.

This book, which is the fi rst monograph in this area, aims to cover all of these topics 
in a unifi ed manner, as well as to survey some of the most recent developments, such 
as the application of the theory to count linear patterns in primes. The book serves 
as an introduction to the fi eld, giving the beginning graduate student in the subject a 
high-level overview of the fi eld. The text focuses on the simplest illustrative examples 
of key results, serving as a companion to the existing literature on the subject. There 
are numerous exercises with which to test one’s knowledge.
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