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Preface

1. In these notes we develop a theory of strong solutions to linear evolution
equations of the type

(0.0.1) ε utt + σ ut − aij(t, x) ∂i∂ju = f(t, x) ,

and their quasi-linear counterpart

(0.0.2) ε utt + σ ut − aij(t, x, u, ut,∇u) ∂i∂ju = f(t, x) .

In (0.0.1) and (0.0.2), ε and σ are non-negative parameters; u = u(t, x),
t > 0, x ∈ RN , and summation over repeated indices i, j, 1 ≤ i, j ≤ N ,
is understood. In addition, and in a sense to be made more precise, the
quadratic form RN � ξ �→ aij(· · · ) ξi ξj is positive definite.

We distinguish the following three cases.

(1) ε > 0 and σ = 0. Then, (0.0.1) and (0.0.2) are hyperbolic equations;
in particular, when ε = 1, they reduce to

(0.0.3) utt − aij ∂i∂ju = f ,

and when aij(· · · ) = δij (the so-called Kronecker δ, defined by
δij = 0 if i �= j, and δij = 1 if i = j), (0.0.3) further reduces to the
classical wave equation

(0.0.4) utt −Δu = f .

(2) ε = 0 and σ > 0. Then, (0.0.1) and (0.0.2) are parabolic equations;
in particular, when σ = 1, they reduce to

(0.0.5) ut − aij ∂i∂ju = f ,

ix
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and when aij(· · · ) = δij , (0.0.5) further reduces to the classical heat
equation

(0.0.6) ut −Δu = f .

(3) ε > 0 and σ > 0. Then, (0.0.1) and (0.0.2) are dissipative hy-
perbolic equations; in particular, when ε = σ = 1, they reduce
to

(0.0.7) utt + ut − aij ∂i∂ju = f ,

and when aij(· · · ) = δij , (0.0.7) further reduces to the so-called
telegraph equation

(0.0.8) utt + ut −Δu = f .

We prescribe that u should satisfy the initial conditions (or Cauchy data)

(0.0.9) u(0, x) = u0(x) , ε ut(0, x) = ε u1(x) ,

where u0 and u1 are given functions on RN , and the second condition is
vacuous if ε = 0 (that is, in the parabolic case we only prescribe the initial
condition u(0, x) = u0(x)).

Our purpose is to show that the Cauchy problems (0.0.1) + (0.0.9) and
(0.0.2) + (0.0.9) are solvable in a suitable class of Sobolev spaces; we call the
corresponding solutions strong. By this, we mean that the solutions we seek
should be functions t �→ u(t), which are valued in a Sobolev space Hr :=
Hr(RN ), and possess a sufficient number of derivatives, either classical or
distributional, so that equations (0.0.1) and (0.0.2) hold for (almost) all t
and all x. More precisely, when ε > 0 we seek for solutions of (0.0.1) and
(0.0.2) in the space

(0.0.10) C0([0, T ];Hs+1) ∩ C1([0, T ];Hs) ∩ C2([0, T ];Hs−1) ,

for some T > 0, where s ∈ N is such that s > N
2 + 1; this condition implies

that strong solutions are also classical. When ε = 0, we seek instead for
solutions of (0.0.1) and (0.0.2) in the space

(0.0.11) {u ∈ C([0, T ];Hs+1) | ut ∈ L2(0, T ;Hs)} .
In addition, we want to show that the Cauchy problems (0.0.1) + (0.0.9)
and (0.0.2) + (0.0.9) are well-posed, in Hadamard’s sense, in these spaces;
that is, that their solutions should be unique and depend continuously on
their data f , u0 and u1 (of course, the latter only for ε > 0). Finally, we
also consider equations with lower order terms, i.e.,

(0.0.12) ε utt + σ ut − aij ∂i∂ju = f + bi ∂iu+ c u ,

in particular in the linear case, as well as equations in the divergence form

(0.0.13) ε utt + σ ut − ∂j(aij ∂iu) = f + bi ∂iu+ c u .
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In the quasi-linear case, equations (0.0.2) will in general have only local
solutions; that is, even if the source term f is defined on a given interval
[0, T ], or on all of [0,+∞[, the solution will be defined only on some interval
[0, τ ], with τ < T , and cannot be extended to all of [0, T ].

2. Our main goal is to develop a unified treatment of equations (0.0.1)
and (0.0.2), both in the hyperbolic (either dissipative, or not) and the par-
abolic case, following a common constructive method to solve either prob-
lem. In the linear case, of course, a unified theory for both hyperbolic
and parabolic equations (0.0.1), in a suitable framework of Hilbert spaces,
has been presented by Lions and Magenes in their three-volume treatise
[101, 102, 103], where they introduced a variety of arguments and tech-
niques to solve fairly general kinds of initial-boundary value problems. The
main reason we seek a unified treatment of equations (0.0.1) and (0.0.2) in
the quasi-linear case is that this allows us to compare the solutions to the
hyperbolic and the parabolic equations, in a number of ways. In particu-
lar, when (0.0.2) admits global solutions (that is, defined on all of [0,+∞[),
we wish to study their asymptotic behavior as t → +∞. We assume that
the coefficients aij in (0.0.2) depend only on the first-order derivatives ut
and ∇u, and are interested in the following questions. The first is that of
the convergence of the solutions of (0.0.2) to the solution of the stationary
equation

(0.0.14) − aij(0,∇v) ∂i∂jv = h .

The second, when ε and σ > 0, is the comparison of the asymptotic profiles
of the solutions of the dissipative hyperbolic equation (0.0.2) to those of
the solutions of the parabolic equation, corresponding to ε = 0. The third
question, related to (0.0.2), is the singular perturbation problem, concerning
the convergence, as ε → 0, of solutions uε of the dissipative hyperbolic
equation to the solution u0 of the parabolic equation.

3. Linear hyperbolic equations of the type (0.0.12) and (0.0.13), in par-
ticular when σ = 0, have been studied by many authors, who have considered
the corresponding Cauchy problem in different settings. An elementary in-
troduction to both kinds of equations can be found in Evans’ textbook [47];
for more advanced and specific results, renouncing to any pretense of a com-
prehensive list, we refer, e.g., to Friedrichs [51], Kato [72], Mizohata [122],
and Ikawa [63], who resort to a solution method based on a semigroup ap-
proach, complicated by the fact that the coefficients aij depend on t. The
semigroup method has later been successfully applied to quasi-linear equa-
tions; see, e.g., Okazawa [130], Tanaka [153, 154, 155], and, for a more
abstract approach, Beyer [15]. Other methods can be seen, e.g., in Racke
[136], and Sogge [151], based respectively on the Cauchy-Kovaleskaya and
the Hahn-Banach theorems. In the solution theory we present in Chapter
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2, we prefer to follow the so-called Faedo-Galerkin method, which is a gen-
eralization of the method of separation of variables, and which explicitly
constructs the solution to (0.0.12) as the limit of a sequence of functions,
each of which solves an approximate version of the problem, determined
by its projection onto suitable finite-dimensional subspaces. The results we
establish for (0.0.1) when ε > 0 are not specifically dependent on the fact
that the equation is hyperbolic; in fact, the Faedo-Galerkin method can be
readily adapted to obtain strong solutions of the linear parabolic equation.
For general references to parabolic equations, both linear and quasi-linear,
we refer, e.g., to Ladyzenshkaya, Solonnikov and Ural’tseva [86], Amann
[6], Pao [131], Lunardi [107], Lieberman [96], and Krylov [83, 84], where

these equations are mostly studied in the Hölder spaces Cm+α/2,2m+α(Q).
For the numerical treatment of equation (2.1.1), we refer, e.g., to Meister
and Struckmeier [112].

4. The Cauchy problem for quasi-linear hyperbolic equations such as
(0.0.2), as well as their counterpart in divergence form (0.0.13), has been
studied by many authors, who have provided local (and, when possible,
global, or, at least, almost global) solutions with a number of methods, in-
cluding a nonlinear version of the Galerkin scheme and various versions of
the Moser-Nash algorithm. Renouncing again to any pretense of a compre-
hensive list, we refer, e.g., to the classical treatise by Courant and Hilbert
[38], as well as the more recent works by Kato [72], John [66], Kichenas-
samy [74], Racke [136], Sogge [151], Hörmander [57], as well as Lax [88],
Li Ta-Tsien [91], and Li Ta-Tsien and Wang Li-Ping [93]. In the above con-
text, local solution means a solution defined on some interval [0, τ ]; almost
global solution means a solution defined on a prescribed interval [0, T ], of
finite but arbitrary length, possibly subject to some restrictions on the size
of the data, depending on T ; global solution means a solution also defined
on arbitrary intervals [0, T ], but with restrictions on the size of the data,
if any, independent of T (thus, these solutions are defined on the entire
interval [0,+∞[). Finally, we also consider global bounded solutions; that
is, global solutions which remain bounded as t → +∞. In Chapter 3, we
present a solution method based on a linearization and fixed point method,
introduced by Kato [70, 71, 72], in which we apply the results for the linear
theory, developed in Chapter 2. As for the linear case, the results we estab-
lish for (0.0.2), when ε > 0, are not specifically dependent on the fact that
the equation is hyperbolic; in fact, the linearization and fixed point method
can be adapted to obtain local, strong solutions of the quasi-linear parabolic
equation

(0.0.15) ut − aij(t, x, u,∇u) ∂i∂ju = f ,
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as well as of the analogous equation in divergence form. Moreover, these
methods can also be applied to other types of evolution equations, such as
the so-called dispersive equations considered in Tao [156], and Linares and
Ponce [97]; these include, among others, the Schrödinger and the Korteweg-
de-Vries equations.

5. Not surprisingly, many more results are available on semi-linear hy-
perbolic and parabolic equations; that is, equations of the form

utt −Δu = f(t, x, u,Du) ,(0.0.16)

ut −Δu = f(t, x, u,∇u) .(0.0.17)

Among the many works on this subject, we limit ourselves to cite Strauss
[150], Todorova and Yordanov [159], Zheng [168], Quittner and Souplet
[133], Cazenave and Haraux [24], and the references therein. Most of these
results concern the well-posedness of the Cauchy problem for (0.0.16) or
(0.0.17) in a suitable weak sense; strong solutions are then obtained by
appropriate regularity theorems, and the asymptotic behavior of such weak
solutions can be studied in terms of suitable attracting sets in the phase
space; see, e.g., Milani and Koksch, [119]. In fact, we could try to develop a
corresponding weak solution theory for hyperbolic and parabolic quasi-linear
equations in the conservation form

(0.0.18) ε utt + σ ut − div[a(∇u)] = f ,

where a : RN → RN is monotone. However, there appears to be a striking
difference between the hyperbolic and the parabolic situation. For the latter,
i.e., when ε = 0 in (0.0.18), existence, uniqueness and well-posedness results
for weak solutions, at least when a is strongly monotone, are available; see,
e.g., Lions [99, ch. 2, §1], and Brézis [19]. In contrast, when ε > 0 the
question of the existence of even a local weak solution to equation (0.0.18)
(that is, in the space (0.0.10) with s = 0) is, as far as we know, totally open
(unless, of course, a is linear).

6. To our knowledge, there are not yet satisfactory answers to the
question of finding sharp life-span estimates for problem (0.0.2), at least in
the functional framework we consider. On the other hand, rather precise
results have long been available, at least for more regular solutions of the
homogeneous equation; that is, when f ≡ 0 and u0 ∈ Hs+1 ∩ W r+1,p,
u1 ∈ Hs∩W r,p, for suitable integers s � N

2 +1, r < s, and p ∈ ]1, 2[. In this
case, the situation also depends on the space dimension N ; more precisely,
one obtains global existence of strong solutions if N ≥ 4, and also if N = 3
if the nonlinearity satisfies an additional structural restriction, known as
the null condition. The proof of these results is based on supplementing
the direct energy estimates used to establish local solutions, with rather
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refined decay estimates of the solution to the linear wave equation. We refer
to Racke [136], and John [66], for a comprehensive survey of the results
of, among many others, John [65], Klainerman [75, 76], Klainerman and
Ponce [81], as well as Klainerman [77] and Christodoulou [31], for the null
condition.

7. The theory of quasi-linear evolution equations has many important
applications. A non exhaustive list would include fluid dynamics (see, e.g.,
Majda [108], and Nishida [126]); general relativity, and, specifically, the
so-called Einstein vacuum equations (Klainerman and Christodoulou [78],
and Klainerman and Nicolò [80]); wave maps (Shatah and Struwe [145],
and Tao [156]); von Karman type thin plate equations (Cherrier and Milani
[26, 27, 29], Chuesov and Lasiecka [33]); control and observability theory
(Li [94]). Other applications, specifically of dissipative hyperbolic equations
(0.0.2) with σ > 0 and ε small, include models of heat equations with delay
(Li [92], Cattaneo [21], Jordan, Dai and Mickens [67], Liu [104]), where ε is
a measure of the delay or heat relaxation time; Maxwell’s equations in ferro-
magnetic materials (Milani [114]), where ε is a measure of the displacement
currents, usually negligible; simple models of laser optic equations (Haus
[54]), where ε is related to measures of low frequencies of the electromag-
netic field; traffic flow models (Schochet [140]), where ε is a measure of the
drivers’ response time to sudden disturbances (which, one hopes, should be
small); models of random walk systems (Hadeler [53]), where ε is related
to the reciprocal of the turning rates of the moving particles; construction
materials with strong internal stress-strain relations, measured by parame-
ters related to the reciprocal of ε (see, e.g., Banks et al. [9, 10] for the case
of a one-dimensional elastomer); and models of time-delayed information
propagation in economics (Ahmed and Abdusalam [2]).

8. These notes have their origin in a series of graduate courses and
seminars we gave at Fudan University, Shanghai, at the Université Pierre et
Marie Curie (Paris VI), the Technische Universität Dresden, and the Ponti-
ficia Universidad Católica of Santiago, Chile. Some of the material we cover
is relatively well known, although many results, in particular on hyperbolic
equations, seem to be somewhat scattered in the literature, and often sub-
ordinate to other topics or applications. Other results, in particular on
the diffusion phenomenon for quasi-linear hyperbolic waves, appear to be
new. Our intention is, in part, to provide an introduction to the theory of
quasi-linear evolution equations in Sobolev spaces, organizing the material
in a progression that is as gradual and natural as possible. To this end, we
have tried to put particular care in giving detailed proofs of the results we
present; thus, if successful, our effort should give readers the necessary basis
to proceed to the more specialized texts we have indicated above. In this
sense, these notes are not meant to serve as an advanced PDEs textbook;
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rather, their didactical scope and subject range is restricted to the effort
of explaining, as clearly as we are able to, one possible way to study two
simple and fundamental examples of evolution equations (hyperbolic, both
dissipative or not, and parabolic) on the whole space RN . In addition, we
also hope that these notes may serve as a fairly comprehensive and self-
contained reference for researchers in other areas of applied mathematics
and sciences, in which, as we have mentioned, the theory of quasi-linear
evolution equations has many important applications. We should perhaps
mention explicitly the fact that, given the introductory level of these notes,
we have limited ourselves to present only those results that can be obtained
by resorting to one of the most standard methods for the study of equations
(0.0.1) and (0.0.2); namely, that of the a priori, or energy, estimates. Of
course, this choice forces us to neglect other methods that are more spe-
cific to the type of equation under consideration and which are extensively
studied in more specialized texts. For example, we do not cover, but only
mention, the theory of Hölder solutions of parabolic quasi-linear equations
(0.0.15) (see, e.g., Krylov [83]), or the theory of weak solutions to quasi-
linear first-order hyperbolic systems of conservation laws, as in (3.1.8) of
Chapter 3 (see, e.g., Alinhac [5], or Serre [143, 144]), and we do not even
mention other very specific and highly refined techniques which have been
developed and are being developed for the study of these equations, such as,
to cite a few, the theory of nonlinear semigroup (see, e.g., Beyer [15]), the
methods of pseudo-differential operators (see, e.g., Taylor [157]) and of mi-
crolocal analysis (see, e.g., Bony [17]). On the other hand, one can perhaps
be surprised by the extent of the results one can obtain, by means of the
one and same technique; that is, the energy method. As we have stated, this
method has, among others, the advantage of allowing us to present our re-
sults in a highly unified way, and to show that, even today, classical analysis
allows us to deal in a simple way, by means of standard and well-tested tech-
niques, with relevant questions in the theory of PDEs of evolution, which
are still the subject of considerable study.

9. The material of these notes is organized as follows. In Chapter 1
we provide a summary of the main functional analysis results we need for
the development of the theory we wish to present. In Chapter 2 we develop
a strong solution theory for the Cauchy problem for the linear equation
(0.0.12), with existence, uniqueness, regularity, and well-posedness results
for both the hyperbolic equation (ε = 1, σ = 0) and the parabolic one
(ε = 0, σ = 1). In Chapter 3 we construct local in time solutions to the
quasi-linear equations (0.0.2) and (0.0.15), by means of a linearization and
fixed-point technique, in which we apply the results on the linear equations
we established in the previous Chapter. Again, we give existence, unique-
ness, regularity, and well-posedness results for both types of equation. In
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Chapter 4 we study the question of the extendibility of these local solu-
tions to either a prefixed finite but arbitrary time interval [0, T ] (almost
global and global existence), or to the whole interval [0,+∞[ (global and
global bounded existence). We present an explicit example of blow-up in
finite time for solutions of the quasi-linear equation (0.0.3) in one dimen-
sion of space, as well as some global and almost global existence results
for either equation, when the data u0, u1 and f are sufficiently small. We
also present a global existence result for the parabolic equation (0.0.15), for
data of arbitrary size. In Chapter 5 we consider the asymptotic behavior,
as t → +∞, of global, bounded, small solutions of (0.0.2), both dissipa-
tive hyperbolic (ε = 1) and parabolic (ε = 0), and we prove some results
on their convergence to the solution of the stationary equation (0.0.14). In
the homogeneous case f ≡ 0, we also establish some stability estimates, on
the rate of decay to 0 of the corresponding solutions. We also give a result
on the diffusion phenomenon, which consists in showing that, when f ≡ 0,
solutions of the hyperbolic equation (0.0.7) (both linear and quasi-linear)
asymptotically behave as those of the parabolic equation (0.0.5) of corre-
sponding type. In Chapter 6 we consider a second way in which we can
compare the hyperbolic and the parabolic problems; namely, we consider
(0.0.2) as a perturbation, for small values of ε > 0, of the parabolic equation
(0.0.2), with ε = 0. Denoting by uε and u0 the corresponding solutions, we
study the problem of the convergence uε → u0 as ε → 0, on compact time
intervals. We consider either intervals [0, T ] or [τ, T ], τ ∈ ]0, T [; that is, in-
cluding t = 0 or not. In the former case, the convergence is singular, due to
the loss of the initial condition on ut, and we give rather precise estimates, as
t and ε → 0, on the corresponding initial layer . We mention in passing that
the estimates we establish on the difference uε − u0 allow us also to deduce
a global existence equivalency result between the two types of equations, in
the sense that a global solution to the parabolic equation, corresponding to
data of arbitrary size, exists, if and only if global solutions to the dissipa-
tive hyperbolic equation also exist, corresponding to data of arbitrary size,
and ε is sufficiently small. We conclude the chapter with a global result
for equation (0.0.2), with data of arbitrary size, when ε is sufficiently large.
Lastly, in Chapter 7, we present two applications of the theory developed
in the previous chapters. In the first example, we consider a model for the
complete system of Maxwell’s equations, in which the use of suitable electro-
magnetic potentials allows us to translate the first-order Maxwell’s system
into a second-order evolution equation of the type (0.0.2). In this model,
the parameters ε and σ can be interpreted as a measure, respectively, of the
displacement and the eddy currents; in some situations, such as when the
equations are considered in a ferro-magnetic medium, displacement currents
are negligible with respect to the eddy ones, and this observation leads to
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the question of the control of the error introduced in the model when the
term ε utt is neglected. In related situations, one is interested in periodic
phenomena, with relatively low frequencies, thus leading to the question of
the existence of solutions on the whole period of time. It is our hope that
these questions may be addressed, at least to some extent, by the results of
the previous chapters. In the second example, we consider two systems of
evolution equations, of hyperbolic and parabolic type, relative to a highly
nonlinear elliptic system of von Karman type equations on R2m, m ≥ 2.
These equations generalize the well-known equations of the same name in
the theory of elasticity, which correspond to the case m = 1, and model
the deformation of a thin plate due to both internal and external stresses.
For both types of systems we show the existence and uniqueness of local in
time strong solutions, which again can be extended to almost global ones
if the initial data are small enough. Even though these systems do not fit
exactly in the framework of second-order evolution equations for which our
theory is developed, their study allows us to show that the unified methods
we present can be applied to a much wider class of equations than those of
the form (0.0.2).

10. Finally, we mention that an analogous unified theory could be con-
structed for initial-boundary value problems for equation (0.0.2), in a sub-
domain Ω ⊂ RN , with u subject to appropriate conditions at the boundary
∂Ω of Ω, assumed to be adequately smooth. The type of results one ob-
tains is qualitatively analogous, but in a different functional setting for both
the data and the solutions. Indeed, the data have to satisfy a number of
so-called compatibility conditions at {t = 0} × ∂Ω, which are different in
the hyperbolic and parabolic cases, and the integrations by parts that are
usually carried out in order to establish the necessary energy estimates (see
Chapter 2) would involve boundary terms that do not appear when Ω = RN .
For example, in our papers [116, 117] we considered the simple case where
equation (0.0.2) is studied in a bounded domain, with homogeneous Dirich-
let boundary conditions; other results can be found, e.g., in Dafermos and
Hrusa [40]. To discuss this topic in a meaningful degree of detail would
require a whole new book; here, we limit ourselves to a reference to the
above-mentioned papers, and to the literature quoted therein, for a brief
overview of the technical issues typically encountered in this situation.

Acknowledgments. In the preparation of these notes, we have bene-
fitted from the generous support of a number of agencies, including grants
from the Fulbright Foundation (Pontificia Universitad Católica of Santiago,
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List of Function Spaces

We report a list of all the function spaces we have introduced in this book. In
the following, X is a real Banach space, Ω is a domain of RN , with boundary
∂Ω, and Q = ]a, b[ ×Ω (or Q = ]a, b[ ×RN ). When Ω = RN , the explicit
reference to Ω is omitted; e.g., Lp := Lp(RN ). For each space, we indicate
either the page where it has been first introduced or a reference where a
definition of the space can be found.

*****

AC([a, b];X) Space of absolutely continuous functions f : [a, b] → X
(p. 62).

Cm(Ω) Space of functions f : Ω → R, which have continuous derivatives of
order up to m (p. 2).

Cm
b (Ω) := {f ∈ Cm(Ω) | max

0≤j≤m
sup
x∈Ω

|∂jf(x)| < +∞} (p. 2).

Cm
0 (Ω) := {f ∈ Cm(Ω) | supp(f) is compact} (p. 2).

Cm(Ω): Space of functions which are restrictions to Ω of functions in
Cm(RN ) (p. 2).

Cm
b (Ω): Space of functions which are restrictions to Ω of functions in

Cm
b (RN ) (p. 3).

Cm,α(Ω) := {f ∈ Cm(Ω) | Hα(∂
mf) < +∞}, Hα defined in (1.3.1) (p. 7).
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Cm,α(Ω) := Cm,α(Ω) ∩ Cm
b (Ω) (p. 7).

Cm+α/2,2m+α(Q) :=
{
f ∈ C(Q) | ∂k

t ∂
λ
xf ∈ C(Q) , 2k + |λ| ≤ 2m,

H̃α(∂
k
t ∂

λ
xf) < +∞ , 2k + |λ| = 2m

}
, H̃α defined in (1.3.4) (p. 8).

C̃m
b (Q) :=

{
f ∈ Cb(Q) | ∂k

t ∂
λ
xf ∈ Cb(Q) , 2k + |λ| ≤ 2m

}
(p. 8).

Cm+α/2,2m+α(Q) := C̃m
b (Q) ∩ Cm+α/2,2m+α(Q) (p. 8).

C([a, b];X): Space of strongly continuous functions f : [a, b] → X (p. 60).

Cm([a, b];X) := {u ∈ C([a, b];X) | ∂j
t u ∈ C([a, b];X) , 0 ≤ j ≤ m} (p. 64).

Cm([a, b];X,Y ) := {u ∈ C([a, b];X) | ∂m
t ∈ C([a, b];Y )} (p. 64).

C([a,+∞[;X): Space of strongly continuous functions f : [a,+∞[ → X
(p. 61).

Cb([a,+∞[;X): Space of strongly continuous and bounded functions
f : [a,+∞[ → X (p. 61).

Cm
b ([a,+∞[;X): Space of continuously differentiable functions
f : [a,+∞[ → X, with bounded derivatives, of order up to m (p. 64).

Cm
b ([a,+∞[;X,Y ) := {u ∈ Cb([a,+∞[;X) | ∂m

t u ∈ Cb([a,+∞[;Y )}
(p. 64).

Cw([a, b];X): Space of weakly continuous functions f : [a, b] → X (p. 61).

D(Ω): Space of test functions in Ω (Rudin [139, ch. 6]).

D ′(Ω): Space of distributions in Ω (Rudin [139, ch. 6]).

D([a, b];X): Space of test functions f : [a, b] → X (Lions and Magenes
[101, ch. 1]).

D ′(]a, b[;X) := L(D(]a, b[);X) (p. 67).

Gs(T ) := Hs+1 ×Hs × Vs−1(T ) (p. 122).

Gs(∞) := Hs+1 ×Hs × Vs−1(∞) (p. 153).

Hm(Ω) = Wm,2(Ω) := {u ∈ L2 | ∂αu ∈ L2 , |α| ≤ m} (p. 13).

H̃m(Ω) := {u ∈ L∞(Ω) | ∇u ∈ Hm−1(Ω)} (m ≥ 1) (p. 14).

Hs(Ω) := (H
s�+1(Ω), H
s�(Ω))s−
s� (Lions and Magenes [101, ch. 1]).

Hs(RN ) := {f ∈ S ′ | (1 + | · |2)s/2 f̂ ∈ L2} (p. 15).

H1/2(∂Ω): Space of traces on ∂Ω of functions in H1(Ω) (p. 16).
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H1
0 (Ω) := {u ∈ H1(Ω) | u |∂Ω = 0} (p. 16).

Hm
0 (Ω) := {u ∈ Hm(Ω) | ∂j

∂νj
u = 0 , 0 ≤ j ≤ m− 1} (p. 16).

Hm
Δ (Ω) := {u ∈ Hm(Ω) | (−Δ)k u ∈ H1

0 (Ω) , 0 ≤ k ≤ �m−1
2 �} (p. 32).

Hm
∗ := {f ∈ Hm | μrf ∈ Hm−1 , 1 ≤ r ≤ N} (p. 53).

Hm(a, b;X,Y ) := Wm,2(a, b;X,Y ) (p. 68).

Hm(a, b;X) := Wm,2(a, b;X,X) (p. 68).

Hh,k(T ) := C([0, T ];Hh) ∩ C1([0, T ];Hk) (p. 348).

K := {f ∈ C1(Rm
≥0;R≥0) | ∂jf ≥ 0 , 1 ≤ j ≤ m} (p. 4).

K0 := {f ∈ K | f(0) = 0} (p. 4).

K∞ := {f ∈ C(R>0;R>0) | lim
r→0

f(r) = +∞} (p. 4).

L(X,Y ) := {f : X → Y | f is linear continuous} (p. 5).

Lp(Ω) := {f : Ω → R | f is measurable ,
∫
Ω |f(x)|p dx < +∞} (up to

equivalence on sets of measure zero) (p. 9).

Lp(Γ): Lp spaces on a (N − 1)-dimensional submanifold Γ ⊂ RN (p. 9).

Lp(a, b;X) := {f : ]a, b[ → X | f is strongly measurable ,∫ b
a ‖u(t)‖pX dt < +∞} (p ∈ R≥1) (p. 60).

L∞(a, b;X) := {f : ]a, b[ → X | f is strongly measurable ,
sup

a<t<b
ess ‖u(t)‖X < +∞} (p. 60).

Pm(T ) := {u ∈ C([0, T ];Hm+1) | Du ∈ L2(0, T ;Hm)} (p. 107).

Pm(∞) := {u ∈ C([0,+∞[;Hm+1) | Du ∈ L2
loc(0,+∞;Hm)} (p. 215).

Pm,b(∞) := {u ∈ Cb([0,+∞[;Hm+1) | Du ∈ L2(0,+∞;Hm)} (p. 215).

P̃s(T ) := H1(0, T ;Hs+2, Hs) (p. 323).

Ph,k(T ) := {u ∈ L2(0, T ;Hh) | ut ∈ L2(0, T ;Hk)} (p. 353).

S: Schwartz’ space of rapidly decreasing functions in RN (Rudin [139,
ch. 7]).

S ′: Space of tempered distributions in RN (Rudin [139, ch. 7]).

V m(RN ): The completion of Hm with respect to the norm u �→ ‖∇u‖m−1

(p. 28).

Vm(T ) := L2(0, T ;Hm+1) ∩ C([0, T ];Hm) (p. 88).
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Vm(∞) := L2
loc(0,+∞;Hm+1) ∩ C([0,+∞[;Hm) (p. 153).

W k
0 (Ω�) :=

{
L2(Ω�) , if k = 0 ,

Hk(Ω�) ∩H1
0 (Ω�) , if k ≥ 1 .

(p. 92).

Wm,p := Wm,p(RN ) (p. 14).

Wm,p := Wm,p ∩ Cb(R
N ) (p. 38).

Wm,p(a, b;X,Y ) := {u ∈ Lp(a, b;X) | u(m) ∈ Lp(a, b;Y )} (p. 68).

Wm,p(a, b;X) := Wm,p(a, b;X,X) (p. 68).

Wm,�,k(a, b) := W k,2(a, b;Hm, Hm−� k) (p. 69).

Wm
T (Q) := {u ∈ W 1,2(0, T ;Hm, L2) | u(T, ·) = 0} (p. 75).

W̃m
T (Q) := {u ∈ W 1,2(−T, T ;Hm, L2) | u(−T, ·) = u(T, ·) = 0} (p. 75).

Xm(T ) := C([0, T ];Hm+1) ∩ C1([0, T ];Hm) (p. 79).

Xk,�(T ) := C([0, T ];W k+1
0 (Ω�)) ∩ C1([0, T ];W k

0 (Ω�)) (p. 92).

Ym(T ) := {u ∈ Xm(T ) | utt ∈ L2(0, T ;Hm−1)} (p. 79).

Yh,k(T ) := L2(0, T ;Hh) ∩ C([0, T ];H(h+k)/2) (p. 353).

Yh,k
(T ) := L2(0, T ; H̄h) ∩ C([0, T ]; H̄(h+k)/2) (p. 353).

Zm(T ) :=
2⋂

j=0
Cj([0, T ];Hm+1−j) (p. 88).

Zm(∞) :=
2⋂

j=0
Cj([0,+∞[;Hm+1−j) (p. 153).

Zm,b(∞) :=
2⋂

j=0
Cj
b([0,+∞[;Hm+1−j) (p. 153).
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[5] S. Alinhac, Hyperbolic Differential Equations. Springer-Verlag, New York, 2009.

[6] H. Amann, Linear and Quasilinear Parabolic Equations. Vol. I Birkhäuser, Basel,
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1976.

[62] R. A. Hunt, On the Convergence of Fourier Series, Orthogonal Expansions, and
their Continuous Analogues. Proc. Conf., Edwardsville, Ill. (1967), 235-255; South-
ern Illinois Univ. Press, Carbondale, Ill.

[63] M. Ikawa, Hyperbolic Partial Differential Equations and Wave Phenomena. Trans-
lations of Mathematical Monographs, 189, American Mathematical Society; Provi-
dence, RI, 2000.

[64] R. Ikehata and K. Nishihara, The diffusion Phenomenon for Second Order Linear
Evolution Equations. Studia Math., 158/2 (2003), 153-161.

[65] F. John, Delayed Singularity Formation in Solutions of Nonlinear Wave Equations
in Higher Dimensions. Comm. Pure Appl. Math., 29 (1976), 649-681.

[66] F. John, Nonlinear Wave Equations, Formation of Singularities. University Lecture
Series, 2, American Mathematical Society; Providence, RI, 1990.

[67] P. M. Jordan, W. Dai, and R. E. Mickens, A Note on the Delayed Heat Equation:
Instability with Respect to the Initial data. Mech. Res. Comm., 35 (2008), 414-420.

[68] G. Karch, Lp-decay of Solutions to Dissipative-Dispersive Perturbations of Con-
servation Laws. Ann. Pol. Math., 57/1 (1997), 65-86.

[69] T. Kasuga. On Sobolev-Friedrichs’ Generalization of Derivatives. Proc. Jap. Acad.,
23 (1957), 596-599.

[70] T. Kato, The Cauchy Problem for Quasi-linear Symmetric Hyperbolic Systems.
Arch. Rat. Mech. Anal., 58 (1975), 181-205.

[71] T. Kato, Quasilinear Equations of Evolution, with Applications to Partial Differ-
ential Equations. Lect. Notes Math. 448; Springer-Verlag, Berlin, 1975; pp. 25-70.

[72] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems. Fermian
Lectures, Scuola Norm. Sup. Pisa, 1985.

[73] J. B. Keller and L. Ting, Periodic Vibrations of Systems Governed by Nonlinear
Partial Differential Equations. Comm. Pure Appl. Math., 19 (1966), 371-420.

[74] S. Kichenassamy, Nonlinear Wave Equations. Monographs in Pure Appl. Math.,
194; Dekker, New York, 1996.

[75] S. Klainerman, Global Existence for Nonlinear Wave Equations. Comm. Pure
Appl. Math., 33 (1980), 43-101.

[76] S. Klainerman, Long Time Behavior of Solutions to Nonlinear Evolution Equa-
tions. Arch. Rat. Mech. Anal., 78 (1982), 73-98.

[77] S. Klainerman, The Null Condition and Global Existence to Nonlinear Wave Equa-
tions. Lect. Appl. Math., 23 (1986), 293-326.

[78] S. Klainerman and D. Christodoulou, The Global Nonlinear Stability of the
Minkowski Space. Princeton Univ. Press, Princeton, NJ, 1994.

[79] S. Klainerman and A. Majda, Formation of Singularities for Wave Equations,
Including the Nonlinear Vibrating String. Comm. Pure Appl. Math., 33 (1980),
241-263.



Bibliography 369
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[145] J. Shatah and M. Strüwe, Geometric Wave Equations. Courant Lect. Notes, 2;
Courant Inst. Math., New York, 2000.



372 Bibliography

[146] Y. Shibata, On the Rate of Decay of Solutions to Linear Viscoelastic Equations.
Math. Meth. Appl. Sci., 23 (2000), 203-226.

[147] Y. Shibata and M. Kikuchi, On the Mixed Problem for Some Quasilinear Hyper-
bolic Systems with Fully Nonlinear Boundary Conditions. J. Diff. Eqs., 80/1 (1989),
154-197.

[148] M. Slemrod, Damped Conservation Laws in Continuum Mechanics. In: Nonlinear
Analysis and Mechanics, vol. III. Pitman, 1978.

[149] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Springer,
New York, 1994.

[150] W. Strauss, Nonlinear Wave Equations. CBMS Reg. Conf. Ser. Math., 73. Amer-
ican Mathematical Society, Providence, RI 1989.

[151] C. Sogge, Lectures on Nonlinear Wave Equations, 2nd ed., International Press,
Boston, MA 2008.
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115 Julio González-Dı́az, Ignacio Garćıa-Jurado, and M. Gloria Fiestras-Janeiro,
An Introductory Course on Mathematical Game Theory, 2010

114 Joseph J. Rotman, Advanced Modern Algebra, 2010

113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
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This book considers evolution equations of hyperbolic and parabolic type. These 
equations are studied from a common point of view, using elementary methods, such 
as that of energy estimates, which prove to be quite versatile. The authors empha-
size the Cauchy problem and present a unifi ed theory for the treatment of these 
equations. In particular, they provide local and global existence results, as well as 
strong well-posedness and asymptotic behavior results for the Cauchy problem for 
quasi-linear equations. Solutions of linear equations are constructed explicitly, using 
the Galerkin method; the linear theory is then applied to quasi-linear equations, by 
means of a linearization and fi xed-point technique. The authors also compare hyper-
bolic and parabolic problems, both in terms of singular perturbations, on compact 
time intervals, and asymptotically, in terms of the diffusion phenomenon, with new 
results on decay estimates for strong solutions of homogeneous quasi-linear equa-
tions of each type.

This textbook presents a valuable introduction to topics in the theory of evolution 
equations, suitable for advanced graduate students. The exposition is largely self-
contained. The initial chapter reviews the essential material from functional analysis. 
New ideas are introduced along with their context. Proofs are detailed and care-
fully presented. The book concludes with a chapter on applications of the theory to 
Maxwell’s equations and von Karman equations.


