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Preface 

About the book. Ricci flow is a geometric and analytic evolution equa
tion which we believe is related to physical reality. One of the underlying 
principles of science is unity. In Ricci flow we see the unity of geometry and 
analysis. It is also expected to exhibit unity with low-dimensional topology. 
In this book we emphasize the more geometric and analytic aspects of Ricci 
flow rather than the topological aspects. We also attempt to convey some of 
the relations and formal similarities between Ricci flow and other geometric 
flows such as mean curvature flow. The interaction of techniques and ideas 
between Ricci flow and other geometric flows is a two-way street. So we 
hope the reader with a more general interest in geometric flows will benefit 
from the usefulness of applying ideas originating in Ricci flow to the study 
of other geometric flows. We have not aimed at completeness, even in the 
realm of the limited material that we cover. A more extensive coverage of 
the subject of Ricci flow is planned in the book by Dan Knopf and one of 
the authors [163] and its multi-authored sequel [153]. 

At places we follow the informal style of lecture notes and have at
tempted to cover some of the basic material in a relatively direct and effi
cient way. At the same time we take the opportunity to expose the reader 
to techniques, some of which lie outside of the subject of Ricci flow per 
se, which he or she may find useful in pursuing research in Ricci flow. So, 
metaphorically speaking, this book is a hybrid between rushing to work in 
the morning on a cold and blistery winter day and a casual stroll through 
the park on a warm and sunny midsummer afternoon. As much as possible, 
we have attempted to construct the book so that the chapters, and in some 
cases, individual sections, are relatively independent. In this way we hope 
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that the book may be used as both an introduction and as a reference. Exer
cises appear at various places in the book and solutions to selected exercises 
are collected at the end of the book. We have endeavored to include some 
open problems which are aimed at conveying to the reader what the limits 
of our current knowledge are and to point to some interesting directions. We 
have also attempted to give the appropriate references so that the reader 
may further pursue the statements and proofs of the various results. To use 
real estate jargon, we hope that the references are reliable, but they are not 
guaranteed; in particular, sometimes the references given may not be the 
first place where a particular result is proven. 

The purpose of this book is to give an introduction to the Ricci flow for 
graduate students and mathematicians interested in working in the subject. 
We have especially targeted the audience of readers who are novices to the 
Ricci flow. In order to make the book suitable for beginners, we have in
cluded in the first chapter basic material on Riemannian geometry. Many 
exercises and open problems can also be found scattered throughout this 
book. Some new progress of Perelman will appear in [153]. For example, 
a detailed coverage of entropy and the reduced distance will be included 
there. Moreover, comparisons are made between the Ricci flow and the 
linear heat equation, mean curvature flow, and other geometric evolution 
equations whenever possible. We have found that the analogies between the 
Ricci flow and other related heat-type equations are important and sugges
tive. Some new material on Hamilton's singularity analysis (unpublished 
recent work of Hamilton) has also been incorporated into this book; more 
generally, we have attempted to make the exposition of Hamilton's singu
larity analysis more complete. However, this book does not intend to cover 
all, or even most, classical aspects of the Ricci flow and the choice of top
ics reflects the authors' limited knowledge in the subject and the authors' 
preferences. The references at the end of the book and the comments at the 
end of the chapters are by no means intended to be exhaustive or complete. 
We only list the references we are aware of and which are most related to 
the material treated in the book. Due to the limited knowledge of the au
thors, it is inevitable that we have missed some important related works; we 
apologize for any omissions. 

Prerequisites. We have tried to make this book as self-contained as 
possible, given the subject matter. The reader is assumed to have a basic 
knowledge of differentiable manifolds. Chapter 1 is an introduction to Rie
mannian geometry, and further basic topics in Riemannian geometry and 
geometric analysis are given in Appendix A. The reader familiar with Rie
mannian geometry may skip Chapter 1. Throughout the book there is a 
reliance on tensor calculus. Geometric (comparison geometry) methods also 
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play an important role in this book. This is especially evident in the study 
of singularities of the Ricci flow. For these reasons we have included a num
ber of exercises intended to develop the reader's proficiency in carrying out 
local coordinate calculations involving tensors and also applying comparison 
geometry techniques. 

Course suggestions. A one semester course might consist of Chapter 
1, Sections 2-5, Chapter 2, Sections 2-3 and 5-7, Chapter 3, Sections 1-6, 
Chapter 4, Sections 1-4, Chapter 5, Sections 1 and 4-6, with the rest of 
the sections in Chapters 1 through 5 and Appendix A optional. The second 
semester topics might include Chapter 6, Sections 1-3 and 5-7, Chapter 7, 
Sections 1-3, Chapter 8, Sections 1-4, Chapter 9, Sections 1-3 and 5-6, and 
Chapter 10, Sections 1-5, with the rest of the sections in Chapters 6 through 
11 and Appendix B optional. The order of Chapters 6 and 7 is essentially 
interchangeable. See also the 'overall structure of the book' and 'suggested 
course outline' flowcharts at the end of the guide for the reader. 

A word from our sponsor. Like its cousin, The Ricci Flow: An 
Introduction by Dan Knopf and one of the authors [163], which we will, for 
the moment, nickname "g^" after the metric, the present book, which we 
will nickname " T ^ " after the connection, comprises an introduction to the 
subject of Ricci flow. As the notation suggests, Y^ is derived from gij. In 
the following we compare and contrast the "metric" and its "connection". 

1. Substance. 

In gij we begin by emphasizing the special geometries and their role in 
the development of Ricci flow. Then we give detailed and comprehensive 
treatments of short time existence, maximum principles, Ricci flow on sur
faces, and Hamilton's '3-manifolds with positive Ricci curvature theorem'. 
The remainder of gij is primarily devoted to proving some classical results on 
Type I singularities and background on such topics as the strong maximum 
principle, derivative estimates, the statement of the compactness theorem, 
and elementary singularity analysis including how to dilate about singular
ities. In the appendices tensor calculus and basic comparison geometry are 
presented. 

In Yijk we begin by giving a review of those aspects of Riemannian ge
ometry which are needed for the study of the Ricci flow. We then discuss 
the same basic topics of short time existence, maximum principle, and 3-
manifolds with positive Ricci curvature. We present the topics of Sobolev 
inequalities, isoperimetric estimates, Perelman's no local collapsing, Ricci 
solitons, higher-dimensional Ricci flow, and the Ricci flow on noncompact 
manifolds. After this we give a comprehensive introduction to singularity 
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analysis, mixing classical results with the application of the no local col
lapsing theorem. Ancient solutions are presented in detail including the 
classical theory and Perelman's classification of 3-dimensional noncompact 
shrinking solitons. Finally we develop differential Harnack inequalities and 
the space-time approach to Ricci flow which leads to Perelman's reduced dis
tance function. In the appendices geometric analysis related to Ricci flow 
and topics in geometric evolution equations are presented. 

2. Style. We would like to imagine g^ as an attempt to write in the 
style of jazz and T^k as an attempt in the style of rock 'n' roll (with apologies 
to rhythm and blues, gospel, country and western, hip hop, etc.). In gij we 
dive right into Ricci flow and then proceed at a metric pace, taking the time 
to appreciate the intricacies and nuances of the melody and structure of the 
mathematical music. In T ^ , after starting from more basic material, as a 
connection to Ricci flow, the tempo is slightly more upbeat. The recital is 
defined on a longer page interval, and consequently more ground is covered, 
with the intention of leading up to the forefront of mathematical research. 
In g^ calculations are carried out in detail in the main body of the book 
whereas in T^k the details appear either in the main body or at the end 
of the book in the solutions to the exercises. With the addition of basic 
core material on Riemannian geometry and a substantial number of solved 
exercises, Y^ is accessible to graduate students and suitable for use in a 
semester or year-long graduate course. 

Ricci flow and geometrization. The subject of Hamilton's Ricci 
flow lies in the more general field of geometric flows, which in turn lies 
in the even more general field of geometric analysis. Ricci flow deforms 
Riemannian metrics on manifolds by their Ricci tensor, an equation which 
turns out to exhibit many similarities with the heat equation. Other geo
metric flows, such as the mean curvature flow of submanifolds, demonstrate 
similar smoothing properties. The aim for many geometric flows is to pro
duce canonical geometric structures by deforming rather general initial data 
to these structures. Depending on the initial data, the solutions to geo
metric flows may encounter singularities where at some time the solution 
can no longer be defined smoothly. For various reasons, in Ricci flow, the 
study of the qualitative aspects of solutions, especially ones which form sin
gularities, is at present more amenable in dimension 3. This is precisely 
the dimension in which the Poincare conjecture was originally stated; the 
higher-dimensional generalizations have been solved by Smale in dimensions 
at least 5 and by Freedman in dimension 4. Remaining in dimension 3, a 
vast generalization of this conjecture was proposed by Thurston, called the 
geometrization conjecture, which, roughly speaking, says that each closed 
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3-manifold admits a geometric decomposition, i.e., can be decomposed into 
pieces which admit complete locally homogeneous metrics. 

Hamilton's program is to use Ricci flow to approach this conjecture. 
Perelman's work aims at completing this program. Through their works 
one hopes/expects that the Ricci flow may be used to infer the existence of 
a geometric decomposition by taking any initial Riemannian metric on any 
closed 3-manifold and proving enough analytic, geometric and topological 
results about the corresponding solution of the Ricci flow with surgery. Note 
on the other hand that, in this regard, one does not expect to need to prove 
the convergence of the solution to the Ricci flow with surgery to a (possibly 
disconnected) homogeneous Riemannian manifold. The reason for this is 
Cheeger and Gromov's theory of collapsing manifolds and its extension to 
the case where the curvature is only bounded from below. Furthermore, if 
one is only interested in approaching the Poincare conjecture, then one does 
not expect to need the theory of collapsing manifolds. For these geomet
ric and topological reasons, the study of the Ricci flow as an approach to 
the Poincare and geometrization conjectures is reduced to proving certain 
analytic and geometric results. In many respects the Ricci flow appears to 
be a very natural equation and we feel that the study of its analytic and 
geometric properties is of interest in its own right. Independent of the res
olution of the above conjectures, there remain a number of interesting open 
problems concerning the Ricci flow in dimension 3. In higher dimensions, 
the situation is perhaps even more interesting in that, in general, much less 
is known. 

The year 1982 marked the beginning of Ricci flow with the appearance of 
Hamilton's paper on 3-manifolds with positive Ricci curvature. Since then, 
the development of Hamilton's program is primarily scattered throughout 
several of his papers (see [81] for a selection of Ricci flow papers edited 
by Cao, Chu, Yau and one of the authors). In Hamilton's papers (some
times implicitly and sometimes by analogy) a well-developed theory of Ricci 
flow is created as an approach toward the geometrization conjecture. We 
encourage the reader to go back to these original papers which contain a 
wealth of information and ideas. Hamilton's program especially takes shape 
in the three papers [287], [290] and [291]. The first two papers discuss 
(among other important topics) singularity formation, the classification of 
singularities, applications of estimates and singularity analysis to the Ricci 
flow with surgery. The third paper discusses applications of the compactness 
theorem, minimal surface theory and Mostow rigidity to obtain geometric 
decompositions of 3-manifolds via Ricci flow under certain assumptions. 

The recent spectacular developments due to Grisha Perelman aimed at 
completing Hamilton's program appear in [452] and [453]. Again the reader 
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is encouraged to go directly to these sources which contain a plethora of 
ideas. Perelman's work centers on the further development of singularity 
and surgery theory. Of primary importance in this regard is Perelman's 
reduced distance function which has its precursors in the work of Li and 
Yau on gradient estimates for the heat equation and of Hamilton on matrix 
differential Harnack inequalities for the Ricci flow. A main theme in Perel
man's work is the use of comparison geometry, including the understanding 
of space-time distance, geodesies, and volume, to obtain estimates. These 
estimates build upon in an ingenious way the earlier gradient estimates of Li 
and Yau and of Hamilton and the volume comparison theorem of Bishop and 
Gromov. In a sense, Perelman has further strengthened the bridge between 
the partial differential equation and comparison approaches to differential 
geometry in the setting of Ricci flow. 

For finite extinction time of the Ricci flow with surgery on 3-manifolds, 
which is aimed at proving the Poincare conjecture using neither the theory 
of collapse nor most of Hamilton's 'nonsingular' techniques, see [454] and 
Colding and Minicozzi [176]. The relevant results on collapsing manifolds 
with only lower curvature bounds were announced in Perelman [452] (with 
earlier related work in [451]) and appear in Shioya and Yamaguchi [504]. 
For expositions of Perelman's work, see Kleiner and Lott [342], Sesum, Tian, 
and Wang [495] and Morgan [419] (there is also a discussion of [453] in Ding 
[193]). We also encourage the reader to consult these excellent expository 
sources which clarify and fill in the details for much of Perelman's work.1 

The authors 

December 6, 2005 

*We also understand that there are forthcoming works of Cao and Zhu [86], Morgan and 
Tian [421], and Topping [536] on Ricci flow devoted primarily to Perelman's work. We encourage 
the reader to consult these works. 
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A Detailed Guide for 
the Reader 

Chapter 1. We present some basic results and facts from Riemannian 
geometry. The results in this chapter, for the most part, either are used 
or are analogous to results in the latter chapters on Ricci flow and other 
geometric flows. Although we have included in this chapter what we feel 
ideally the reader should know, he or she should be reassured that mastering 
all of the contents of this chapter is not a prerequisite for studying Ricci flow! 
Indeed, this chapter may be used as a reference to which the reader may 
refer when necessary. 

In Section 2 we give a quick review of metrics, connections, curvature, 
and covariant differentiation. Of particular note are the Bianchi identi
ties, the Lie derivative, and the covariant derivative commutator formulas 
in Section 3, which have applications to the formulas we shall derive for 
solutions of the Ricci flow. In Section 4 we recall the theory of differential 
forms and discuss the Laplace operator for tensors and Bochner formulas 
for differential forms. Since integration by parts is a useful technique in 
geometric analysis and in particular Ricci flow, in Section 5 we recall the 
divergence theorem and its consequences. We also give a quick review of the 
de Rham theorem and the Hodge decomposition theorem. In Section 6 we 
introduce the Weyl tensor and the decomposition of the Riemann curvature 
tensor into its irreducible components. We consider some basic aspects of 
locally conformally flat manifolds. In Section 7 we discuss Cartan's method 
of moving frames since it is a useful technique for computing curvatures, es
pecially in the presence of symmetry. As an application, we give a proof of 
the Gauss-Bonnet formula for surfaces using moving frames. We also discuss 

xxi 
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hypersurfaces from the point of view of moving frames. Metric geometry has 
important implications in Ricci flow, so we discuss (Section 8) the first and 
second variation of arc length and energy of paths. Applications are Synge's 
theorem and the Hessian comparison theorem. We include the application 
of the second variation formula to long geodesies and a variational proof of 
the fact that Jacobi fields minimize the index form. We also discuss the first 
and second variation formulas for the areas of hypersurfaces. Such formulas 
have applications to minimal surface theory. In Section 9 we recall basic 
facts about the exponential map such as the Gauss lemma, the Hopf-Rinow 
theorem, Jacobi fields, conjugate and cut points, and injectivity radius esti
mates for positively curved manifolds. Next (Section 10) we present geodesic 
spherical coordinates using the exponential map. This is a convenient way 
of studying (Hessian) comparison theorems for Jacobi fields, and by taking 
the determinant, volume (Laplacian) comparison theorems. One may think 
of these calculations as associated to hypersurfaces (the distance spheres 
from a point) evolving in their normal directions with unit speed. (More 
generally, one may consider arbitrary speeds, including the mean curvature 
flow.) Observe that the Laplacian of the distance function is the radial de
rivative of the logarithm of the Jacobian, which is the mean curvature of 
the distance spheres. Similarly, the Hessian of the distance function is the 
radial derivative of the logarithm of the inner product of Jacobi fields, which 
is the second fundamental form of the distance spheres. We then begin to 
discuss in more detail the Laplacian and Hessian comparison theorems in 
Section 11. These results are essentially equivalent to the Bishop-Gromov 
volume and Rauch comparison theorems and have important analogues in 
Ricci flow. As an application, we prove the mean value inequality. In Section 
12 we give detailed proofs of the Laplacian, volume and Hessian comparison 
theorems. In the case of the Laplacian comparison theorem, we prove the 
inequality holds in the sense of distributions. In Section 13 we discuss the 
Cheeger-Gromoll splitting theorem, which relies on the Busemann functions 
associated to a line being subharmonic (and hence harmonic), and the mean 
value inequality. We then discuss the Toponogov comparison theorem. Left-
invariant metrics on Lie groups provide nice examples of solutions on Ricci 
flow which can often be analyzed, so we introduce some background material 
in Section 14. In the notes and commentary (Section 15) we review some 
basic facts about the first and second fundamental forms of hypersurfaces in 
Euclidean space, since we shall later discuss curvature flows of hypersurfaces 
to compare with Ricci flow. 

Chapter 2. Here we begin the study of Ricci flow proper. Before we 
describe the contents of this chapter, we suggest that the reader may oc
casionally refer to Chapter 4 for some explicit examples of solutions to the 
Ricci flow; these examples may guide the reader's intuition when studying 
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the abstract derivations throughout the book. We start in Section 1 with 
some historical remarks about geometric evolution equations. We also give 
a brief layman's description of how Ricci flow approaches the Thurston ge-
ometrization conjecture. The Ricci flow is like a heat equation for metrics. 
One quick way of seeing this (Section 2) is to compute the evolution equa
tion for the scalar curvature using a variation formula we derive later. We 
get a heat equation with a nonnegative term. Because of this, we can apply 
the maximum principle (Section 3) to show that the minimum of the scalar 
curvature increases. The variation formula for the scalar curvature yields a 
short derivation of Einstein's equations as the Euler-Lagrange equation for 
the total scalar curvature (Section 4). By modifying the total scalar curva
ture, we are led to Perelman's energy functional. Next (Section 5) we carry 
out the actual computations of the variation of the connection and curva
tures. When the variation is minus twice the Ricci tensor, we obtain the 
evolution equations for the connection, scalar and Ricci curvatures under 
the Ricci flow. This is the first place we encounter the Lichnerowicz Lapla-
cian which arises in the variation formula for the Ricci tensor. Since the 
Ricci flow is a weakly parabolic equation, to prove short time existence, we 
use DeTurck's trick, which shows that it is equivalent to a strictly parabolic 
equation (Section 6). Having derived the evolution equations for the Ricci 
and scalar curvatures, we derive the evolution equation for the full Riemann 
curvature tensor (Section 7). This takes the form of a heat equation with 
a quadratic term on the right-hand side. In dimension 3, the form of the 
quadratic term is especially simple. In the notes and commentary (Section 
8) we discuss the symbol of the linearization of the Ricci tensor. 

Chapter 3. We give a proof of Hamilton's classification of closed 3-
manifolds with positive Ricci curvature using Ricci flow. Hamilton's theo
rem (Section 1) says that under the normalized (volume-preserving) Ricci 
flow on a closed 3-manifold with positive Ricci curvature, the metric con
verges exponentially fast in every C^-norm to a constant positive sectional 
curvature metric. The maximum principle for tensors (Section 2) enables us 
to estimate the Ricci and sectional curvatures. We first show that positive 
Ricci curvature and Ricci pinching are preserved. To control the curvatures, 
it is convenient to generalize the maximum principle for symmetric 2-tensors 
to a maximum principle for the curvature operator, and more generally, to 
systems of parabolic equations on a vector bundle (Section 3). Using this 
formalism, we show that the pinching of the curvatures improves and tends 
to constant curvature at points and times where the curvature tends to in
finity. This is the central estimate in the study of 3-manifolds with positive 
Ricci curvature. Once we have a pointwise estimate for the curvatures, we 
need a gradient estimate for the curvature in order to compare curvatures 
at different points at the same time (Section 4). Based on the fact that the 
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pinching estimate breaks the scale-invariance, we obtain a gradient of the 
scalar curvature estimate which shows that a scale-invariant measure tends 
to zero at points where the curvature tends to infinity. Combining the esti
mates of the previous sections, we show that indeed the curvatures tend to 
constant (Section 5). With control of the curvatures and assuming deriva
tive estimates derived in a later chapter, we can show that the normalized 
Ricci flow converges exponentially fast in each C^-norm to a constant pos
itive sectional curvature metric (Section 6). In the notes and commentary 
(Section 7) we state some of the basic evolution equations under the mean 
curvature flow. These formulas are somewhat analogous to the equations 
for the Ricci flow. 

Chapter 4. We discuss Ricci solitons, homogeneous solutions and other 
special solutions. From the study of singularity formation we are interested 
in solutions which exist for all negative time. Some of these solutions exist 
also for all positive time, which makes them even more special. Of fun
damental importance are gradient Ricci solitons (Section 1). We carefully 
formulate the basic equations of a gradient Ricci soliton and show that gradi
ent solitons can be put in a canonical form. It is interesting that Euclidean 
space is not only a steady soliton but also a shrinking and an expanding 
soliton (Section 2). We then briefly discuss the cylinder shrinking soliton. 
For the Ricci flow on low-dimensional manifolds, it is particularly impor
tant to consider complete Ricci solitons on surfaces with positive curvature. 
The cigar soliton (Section 3) is such a soliton on the Euclidean plane, rota-
tionally symmetric, asymptotic to a cylinder at infinity and with curvature 
decaying exponentially fast. We exhibit the cigar soliton in various coor
dinate systems. An interesting rotationally symmetric ancient solution on 
the 2-sphere is the Rosenau solution (Section 4). As time tends to negative 
infinity, the Rosenau solution looks like a pair of cigars, one at each end. 
Indeed, backward (in time) limits at the endpoints yield the cigar soliton. 
Next we describe an explicit rotationally symmetric expanding soliton on 
the plane with positive curvature (Section 5). The curvature also decays 
exponentially fast as the distance to the origin tends to infinity. Moving 
up one dimension, we obtain the Bryant soliton (Section 6). This is a rota
tionally symmetric steady gradient Ricci soliton on Euclidean 3-space with 
positive sectional curvature. Here the curvature decays inverse linearly and 
the metric is essentially asymptotic to a paraboloid at infinity. This means 
that at infinity the metric, after rescaling, limits to a cylinder in the same 
sense that a parabola in the plane, after rescaling, limits to two parallel lines 
after dilating about points which tend to infinity. Some of the most interest
ing explicit examples are homogeneous solutions (Section 7). We consider 
SU(2) and Nil and analyze the ODE which arises from Ricci flow. Here, since 
the isometry group acts transitively on the manifold, the Ricci flow reduces 
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to a system of ordinary differential equations. In dimension 3, these systems 
are largely well understood. We also consider the Ricci flow of bi-invariant 
metrics on a compact Lie group. Under the Ricci flow, isometries persist 
(Section 8). That is, the isometry group is nondecreasing. It is interesting to 
ask if the isometry group remains constant under the Ricci flow. Analogous 
to the Ricci flow on surfaces is the curvature shortening flow (CSF) of plane 
curves (Section 9). The analogue of the cigar soliton is the grim reaper for 
the CSF. The Rosenau solution also has an analogue for the CSF. 

Chapter 5. In this chapter we discuss monotonicity formulas which 
yield isoperimetric and volume ratio estimates. In Section 1 we discuss 
isoperimetric inequalities and their relation with Sobolev inequalities. We 
also derive the logarithmic Sobolev inequality from the L2 Sobolev inequal
ity. In Section 2 we study the evolution of the length of paths and geodesies 
in preparation for studying the evolution of the isoperimetric ratio on sur
faces. Another proof, due to Hamilton, of the convergence of the Ricci flow 
on a 2-sphere uses a monotonicity formula for the isoperimetric ratio (Section 
3). In Section 4 we give a proof of Perelman's no local collapsing theorem. 
In Section 5 we present geometric applications of the no local collapsing 
theorem. Of particular note are the consequent local injectivity radius esti
mate and the fact that the cigar can be ruled out as a finite time singularity 
model. The local injectivity radius estimate enables one to take limits of 
dilations of finite time singular solutions on closed manifolds. To facilitate 
the exposition of this, we present some preliminaries on the compactness 
theorem for solutions of the Ricci flow. In Section 6 we give a shorter proof 
of the classification of closed 3-manifolds with positive Ricci curvature using 
Perelman's no local collapsing theorem and the compactness theorem. Here 
we only prove sequential convergence instead of exponential convergence. In 
Section 7 we discuss Hamilton's isoperimetric estimate for Type I singular 
solutions in dimension 3. 

Chapter 6. In this chapter we collect the analytic results and tech
niques which are useful for singularity analysis. Estimates for all of the 
derivatives of the curvature (Section 1) in terms of bounds on the curvature 
enable one to show that the solution exists as long as the curvature remains 
bounded (the long time existence theorem). Thus if a solution forms a sin
gularity in finite time (i.e., cannot be continued past a finite time), then 
the supremum of the curvature is infinity. In Section 2 we present the local 
derivative of curvature estimates of W.-X. Shi. These estimates are funda
mental in the study of singularities of the Ricci flow. Another basic tool to 
study singular solutions is a Cheeger-Gromov-type compactness theorem for 
a sequence of solutions of Ricci flow (Section 3). We present both the global 
and local versions of this result. What is needed for this sequence is a curva
ture bound and an injectivity radius estimate (to prevent collapsing). The 
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sequences we usually consider arise from dilating a singular solution about 
a sequence of points and times with the times approaching the singularity 
time. An interesting application of compactness is Sesum's result (Section 
4) tha t a solution exists as long as its Ricci curvature is bounded. When 
studying the formation of singularities on a 3-manifold, the Hamilton-Ivey 
estimate is particularly useful (Section 5). Roughly speaking, it says tha t at 
large curvature points, the largest sectional curvature is positive and much 
larger than any negative sectional curvature in magnitude. It implies tha t 
limits of dilations (which we call singularity models) have nonnegative sec
tional curvature. Since nonnegative sectional curvature metrics are rather 
limited geometrically and (especially) topological^, this is a crucial first step 
in the surgery theory for singular 3-dimensional solutions. The Hamilton-
Ivey estimate also tells us tha t ancient 2- and 3-dimensional solutions with 
bounded curvature have nonnegative sectional curvature. Nonnegative sec
tional curvature in dimension 3 is a special case of nonnegative curvature 
operator in all dimensions, a curvature condition which is preserved under 
the Ricci flow. Such solutions satisfy the strong maximum principle (Sec
tion 6), which says that either the solution has (strictly) positive curvature 
operator or the holonomy reduces and the image and kernel of the curva
ture operator are constant in time and invariant under parallel translation. 
This rigidity result is especially powerful in dimension 3 (Section 7), where 
it implies that a simply connected nonnegative sectional curvature solution 
of the Ricci flow either has positive sectional curvature, splits as the prod
uct of a surface solution with positive curvature (which is topologically a 
2-sphere or the plane) and a line, or is the flat Euclidean space. In the notes 
and commentary (Section 8) we note tha t the derivative estimates may be 
improved if we assume bounds on some derivatives of the curvature. 

Chapter 7. In Section 1 we present the spherical space form theorem 
of Huisken, Margerin, and Nishikawa which says tha t for an initial Rie-
mannian manifold with sectional curvatures pointwise sufficiently close to 
that of a constant positive curvature space, the normalized Ricci flow exists 
for all time and converges to a constant positive curvature metric. In Sec
tion 2 we outline the proof of Hamilton's classification of 4-manifolds with 
positive curvature operator. In higher dimensions (Section 3), a solution 
with nonnegative curvature operator either has positive curvature operator, 
a Kahler manifold with positive curvature operator on (1, l)-forms, or is 
a locally symmetric space. Except in dimension 4, where it was solved by 
Hamilton, it is an open problem whether a closed Riemannian manifold with 
positive curvature operator converges under the Ricci flow to a metric with 
constant positive sectional curvature (spherical space form). A potentially 
useful result in this regard, due to Tachibana, says tha t an Einstein metric 
with positive curvature operator has constant sectional curvature and an 
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Einstein metric with nonnegative curvature operator is locally symmetric. 
The maximum principle discussed in Chapter 2 extends to complete non-
compact manifolds. In Section 4 we present some general results about the 
maximum principle on noncompact manifolds. In Section 5 we survey some 
results on complete solutions of the Ricci flow on noncompact manifolds. 

Chapter 8. Here we begin our study of singularities. To study singu
larities (Section 1), one takes dilations about sequences of points and times 
where the time tends to the singularity time. The limit solutions of such 
sequences, if they exist, are ancient solutions. It is useful to distinguish 
singular and ancient solutions according to the rate of blowup of the curva
ture. Type I singularities blow up in finite time at the rate of the standard 
shrinking sphere. Type II singularities form more slowly in the sense that 
in terms of the curvature scale, the time to blow up is longer than that of 
Type I. On the other hand, as a function of time to blow up, the curvature 
of a Type II singularity is larger than that of a Type I singularity. We also 
give lower bounds (gap estimates) for the supremum of the curvature as a 
function of time for singular and ancient solutions. Given a singularity type, 
we describe ways of picking sequences of points and times about which to 
dilate (Section 2). Suitable choices of such sequences lead to ancient so
lution limits, called singularity models. Given an ancient solution, we can 
also dilate again about a sequence of points and times. We also discuss the 
prototype for a Type II singularity: the degenerate neckpinch. An interest
ing open problem is to show that Type II singularities indeed exist, a result 
which is known for the mean curvature flow. Since complete noncompact 
ancient solutions are important in the study of singularities, we begin the 
study of the geometry at infinity of such solutions under various hypotheses 
(Section 3). Some useful geometric invariants of the geometry at infinity 
are the asymptotic scalar curvature ratio and the asymptotic volume ratio. 
To study the geometry at infinity, a useful technique is dimension reduction 
(Section 4). Here we assume the asymptotic scalar curvature ratio (ASCR) 
is infinite, that is, the limsup of the scalar curvature times the square dis
tance to an origin is equal to infinity. Roughly speaking, this says that the 
scalar curvature has slower than quadratic decay. Using a point-picking-
type argument, we find good sequences of points tending to spatial infinity. 
When ASCR is infinite and Rm > 0, there exists a limit which splits as the 
product of a one lower-dimensional solution with a line. In the notes and 
commentary we note that numerical studies of a degenerate neckpinch have 
been carried out by Garfinkle and Isenberg (Section 5). 

Chapter 9. Considering ancient solutions on 2-dimensional surfaces 
(Section 1), we show using the Harnack inequality that ancient solutions 
with bounded curvature whose maximum is attained in space in time must 



xxvm A Detailed Guide for the Reader 

be isometric to the cigar soliton. On the other hand, using Hamilton's en
tropy monotonicity, one can show that Type I ancient solutions are compact 
and in fact isometric to the round shrinking sphere. Complementarity, Type 
II ancient solutions (such as the Rosenau solution) must have a backward 
limit which is the cigar soliton. Our discussion includes as a corollary the 
classification of ancient /^-solutions on surfaces. An interesting result is that 
noncompact ancient solutions on surfaces with time-dependent bounds on 
the curvature can be extended to eternal solutions. We conjecture that eter
nal solutions (without assuming the supremum of the curvature is attained) 
are cigar solitons. Optimistically, one can hope that the only complete an
cient surface solutions with bounded curvature are rotationally symmetric 
and, in fact, belong to one of three types: either the cigar, or a surface 
with constant curvature, or the Rosenau solution. In Section 2 we discuss 
aspects of ancient solutions relating to their type. A Type I ancient solution 
with positive curvature operator has infinite asymptotic scalar curvature ra
tio. For Type II ancient solutions with positive curvature operators there 
exist backward limits which are steady gradient Ricci solitons. We also 
state and prove Perelman's theorem that positively curved ancient solutions 
have vanishing asymptotic volume ratio and infinite asymptotic scalar cur
vature ratio. In Section 3 we give proofs of Hamilton's results that steady 
gradient Ricci solitons have infinite asymptotic scalar curvature ratio and 
complete noncompact expanding gradient Ricci solitons with positive Ricci 
curvature have positive asymptotic volume ratio. In Section 4 we discuss a 
local injectivity radius estimate for steady gradient Ricci solitons not assum
ing they are ft-noncollapsed. In Section 5 we discuss what is known about 
3-dimensional singularities from the classical theory as well as Perelman's 
no local collapsing theorem. In dimension 3, by dimension reduction, there 
exists a limit which splits as the product of a surface solution with a line. 
By the no local collapsing theorem, the surface solution cannot be the cigar 
soliton. By a previous result of Hamilton, the surface must then be a round 
shrinking 2-sphere. In the case of a Type I ancient solution, we either have 
a shrinking spherical space form or there exists a backward limit which is 
a cylinder (2-sphere product with a line). For ancient ^-solutions the latter 
cannot exist. We conjecture that the K-noncollapsed condition can be re
moved. In dimension 3 we also have another basic result of Perelman, the 
nonexistence of noncompact shrinking gradient solitons with positive sec
tional curvature (Section 6). In Section 7 we summarize the results in the 
chapter and pose some conjectures about long-existing solutions, especially 
in dimensions 2 and 3. 

Chapter 10. We discuss various differential Harnack estimates. These 
are sharp pointwise derivative estimates which usually enable one to com
pare a solution at different points in space and time. In Ricci flow they 
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have applications toward the classification of singularity models. We begin 
with the heat equation (Section 1) and present the seminal Li-Yau estimate 
for positive solutions. For manifolds with nonnegative Ricci curvature, the 
estimate is sharp in the sense that equality is obtained for the fundamental 
solution on Euclidean space. Since the Li-Yau estimate has a precursor in 
the work of Yau on harmonic functions, we discuss the Liouville theorem for 
complete manifolds with nonnegative Ricci curvature, which relies on a gra
dient estimate. The Li-Yau estimate has a substantial extension to solutions 
of the Ricci flow, due to Hamilton. To describe this, we begin with surfaces, 
since the form of the inequality and its proof are much simpler in this case. In 
Section 2 we prove a differential Harnack estimate for surfaces with positive 
curvature. Ricci solitons again motivate the specific quantities we consider. 
A perturbation of these arguments enables one to prove a Harnack estimate 
for surfaces with variable signed curvature. Interestingly, the above (trace) 
inequality may be generalized to a matrix inequality which, roughly speak
ing, gives a lower bound for the Hessian of the logarithm of the curvature. 
In this sense, the Harnack inequalities are somewhat analogous to the Lapla-
cian and Hessian comparison theorems of Riemannian geometry discussed in 
Chapter 1. A fact related to Hamilton's entropy is that in the space of met
rics on a surface with positive curvature, its gradient is the matrix Harnack 
quantity, which in dimension 2 is a symmetric 2-tensor. Next, in dimension 
2, we consider a 1-parameter family of Harnack inequalities for the Ricci 
flow coupled to a linear-type heat equation (Section 3). In one instance we 
have the Li-Yau inequality, and in another instance we have the linear trace 
Harnack estimate, which generalizes Hamilton's trace estimate. An open 
problem is to generalize this to higher dimensions. In the Kahler case, this 
has been accomplished by one of the authors. With these preliminaries we 
move on to Hamilton's celebrated matrix Harnack estimate for solutions of 
the Ricci flow with nonnegative curvature operator (Section 4). The spe
cific Harnack quadratic under consideration is motivated directly from the 
consideration of expanding gradient Ricci solitons. The trace inequality (ob
tained from the matrix inequality by summing over an orthonormal basis) 
is particularly simple to state and in all dimensions is surprisingly similar 
to the 2-dimensional inequality. We show that the matrix inequality in di
mension 2 is the same as the previous estimate which was in the form of 
a symmetric 2-tensor being nonnegative. The proof of the matrix estimate 
depends on a calculation, which at first glance looks quite complicated (Sec
tion 5). However, using the formalism of considering tensors as vector-valued 
functions on the principal frame bundle (either GL(n,E) or O(n)), we can 
simplify the computations. The matrix Harnack quadratic is a bilinear form 
on the Whitney sum of the bundle of 1-forms with the bundle of 2-forms. It 
satisfies a heat-type equation with a quadratic nonlinear term analogous to 
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the heat-type equation satisfied by the Riemann curvature tensor. Taking 
bases of 1-forms and 2-forms, one can exhibit the quadratic nonlinearity as a 
sum of squares when the curvature operator is nonnegative. This is the main 
reason for why the matrix Harnack inequality may be proved by a maximum 
principle argument. The trace Harnack inequality has a generalization to a 
Harnack inequality for nonnegative definite symmetric 2-tensors satisfying 
the Lichnerowicz Laplacian heat equation coupled to the Ricci flow (Section 
6). This Harnack estimate generalizes the trace Harnack estimate. Using 
this, we give a simplified proof of Hamilton's result that ancient solutions 
with nonnegative bounded curvature operator which attain the supremum 
of their scalar curvatures are steady gradient Ricci solitons. Further investi
gating the linearized Ricci flow, we give a pinching estimate for solutions to 
the linearized Ricci flow on closed 3-manifolds. An open problem is to find 
applications of this general estimate, perhaps in conjunction with the linear 
trace Harnack estimate or other new estimates. In the notes and commen
tary (Section 7) we briefly discuss the matrix Harnack estimate for the heat 
equation, the Harnack estimate for the mean curvature flow, and some tools 
for calculating evolution equations associated to Ricci flow. 

Chapter 11. We discuss various space-time geometries which are rather 
similar, culminating in Perelman's metric on the product of space-time with 
large-dimensional and large radius spheres. We begin with Hamilton's no
tion of the Ricci flow for degenerate metrics and the space-time connection of 
Chu and one of the authors (Section 1). This connection is compatible with 
the degenerate space-time metric and as a pair they satisfy the Ricci flow for 
degenerate metrics. We state the formulas for the Riemann and Ricci tensors 
of the space-time connection and observe curvature identities which suggest 
that the metric-connection pair is a Ricci soliton. We observe (Section 2) 
that the space-time Riemann curvature tensor is the matrix Harnack qua
dratic and the space-time Ricci tensor is the trace Harnack quadratic. Next 
we take the product of space-time with Einstein metric solutions of the Ricci 
flow (Section 3). We also introduce a scalar parameter into the definition 
of the potentially infinite space-time metric. We calculate the Levi-Civita 
connections of these metrics and observe that they essentially tend to the 
space-time connection defined in Section 1. It is particularly interesting that 
the space-time Laplacians tend to the heat (forward or backward) operator 
(depending on the sign of the scalar parameter). This fact depends on the 
dimension tending to infinity. Next we compute the Riemann and Ricci 
curvature tensors of the potentially infinite metrics. We observe that when 
the scalar parameter is —1, the metric tends to Ricci flat (this is due to 
Perelman). This is related to the developments on the ^-function discussed 
in [153]. We also recall the observation, again due to Perelman, that the 
metrics are essentially potentially Ricci solitons (at least he observed this 
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when the parameter is either —1 or 1). Renormalizing the space-time length 
functional, we obtain the ^-function (Section 4). Not only is the space-time 
metric and connection related to the matrix Harnack estimate, it is also re
lated to the linear trace Harnack estimate (Section 5). Here we need to make 
some modifications to describe the relation. An auxiliary function / is intro
duced and its definition is related to Perelman's idea of fixing the measure 
which he introduced when defining his energy and entropy. In the notes and 
commentary we discuss a space-time formulation of flows of hypersurfaces 
(Section 6) and its relation with Andrews' Harnack inequalities. 

Appendix A. In this appendix we discuss various aspects of geometric 
analysis which are related to Ricci flow. In Section 1 we start with a short 
compendium of some inequalities used in the book. In Section 2 we recall 
some comparison theorems and explicit formulas for the heat kernel on Rie-
mannian manifolds and in particular on constant curvature spaces. Next 
(Section 3) we discuss the Green's function, which is related to the heat 
equation and the geometry of the manifold. In Section 4 we give another 
proof of the Liouville Theorem 10.8. We also (Section 5) recall some basic 
facts about eigenvalues and eigenfunctions of the Laplacian. In the Ricci 
flow it is useful to study the lowest eigenvalue of certain elliptic (Laplace
like) operators. Li and Yau give a lower bound for the first eigenvalue on 
a closed manifold with nonnegative Ricci curvature. Lichnerowicz's result 
gives a lower bound assuming a positive lower bound of the Ricci curva
ture. We recall Reilly's formula and its application to estimating the first 
eigenvalue on manifolds with boundary. In Section 6 we discuss the defini
tion of the determinant of the Laplacian via the zeta function regularization 
and compute the difference of determinants on a Riemann surface. The 
determinant of the Laplacian is an energy functional for the Ricci flow on 
surfaces. Since the Ricci flow evolves metrics and is related to the heat equa
tion, we discuss (Section 7) the asymptotics of the heat kernel associated 
to the heat operator with respect to an evolving metric. The method is a 
slight modification of the fixed metric case. For comparison with Ricci flow 
monotonicity formulas, in Section 8 we recall some monotonicity formulas 
for harmonic functions and maps. In Section 9 we recall the Bieberbach 
theorem on the classification of flat manifolds; we approach the proof along 
the lines of Gromov's almost flat manifolds theorem. 

Appendix B. In this appendix we discuss identities, inequalities, and 
estimates for various flows including the Ricci flow, Yamabe flow, and the 
cross curvature flow. It is interesting to compare these techniques. We 
begin in Section 1 by recalling the statement of the convergence result for 
the Ricci flow on closed surfaces. Next we consider the Kazdan-Warner 
and Bourguignon-Ezin identities in Section 2, from which it follows that 
a Ricci soliton on the 2-sphere has constant curvature. Then we turn our 
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attention to Andrews' Poincare-type inequality (Section 3), which holds in 
arbitrary dimensions. In dimension 2, it implies that Hamilton's entropy is 
monotone. This is useful in certain applications of the maximum principle, 
especially for systems. One of the proofs of the convergence of the Ricci 
flow on the 2-sphere relies on Ye's gradient estimate for the Yamabe flow 
of locally conformally flat manifolds with positive Yamabe invariant (Sec
tion 4). The Aleksandrov reflection method is used to obtain the gradient 
estimate. We also state Leon Simon's asymptotic uniqueness theorem. An 
interesting fact, which follows from the contracted second Bianchi identity, 
is that the identity map from a Riemannian manifold to itself, where the 
image manifold has the Ricci tensor as the metric (assuming it is positive), is 
harmonic (Section 5). In dimension 3 there is a symmetric curvature tensor, 
called the cross curvature tensor, which is dual to the Ricci tensor in the 
following sense. The identity map from a Riemannian 3-manifold to itself, 
where the domain manifold has the cross curvature tensor as the metric (as
suming the sectional curvature is either everywhere negative or everywhere 
positive), is harmonic. We show two monotonicity formulas for the cross 
curvature flow which suggest that a negative sectional curvature metric on 
a closed 3-manifold should converge to a constant negative sectional curva
ture (hyperbolic) metric. In Section 6 we consider the time-derivative of the 
supremum function. This has applications to maximum principles. Finally, 
in the notes and commentary we note that in higher dimensions there are ar
bitrarily pinched negative sectional curvature metrics which do not support 
hyperbolic metrics. 

Bibliography. We have included a number of references in the areas 
of Ricci flow, geometric evolution equations, geometric analysis, and related 
areas. Not all of the references are cited in the book. The references we do 
not cite are included so that the interested reader may be aware of various 
works in these fields which may be related to the topics discussed in this 
book. 



A Detailed Guide for the Reader xxxm 

Overall Structure of the Book 

§1.4-1.5 
Integration Theory 

/ 

§2.1 
Geometric 

Flows 
§2.2-2.3, 2.5-2.7 

Basic Ricci Flow 

i 

(§1.8-1.10) §3.1-3.6 
3-manifolds with 

positive Ricci 

(§1.14) §4.9 

Homogeneous 
Solutions 

I / 

(§1.11-1.12, 2.4) 

§5.1-5.5 
No Local Collapsing 

(§3.3) §5.6 

3-d R c > 0 
Revisited 

/ 

§6.1-6.7 

Pre-singularity Analysis 

I / 

(§1.13) §8.1-8.4 
Singularity Analysis 

§10.1-10.7 
Differential 

Harnack Estimates 

' §7.4-7.5 
Noncompact 
Ricci Flow 

I / I 

(§1.13) §9.1-9.7 
Ancient Solutions 

§11.1-11.5 
Space-time Geometry 



XXXIV A Detailed Guide for the Reader 

Suggested Course Outline 

Semester 1 

§1.2-1.5 
Riemannian Geometry 

i 

§2.2-2.3, 2.5-2.7 
Basic Ricci Flow 

§3.1-3.6 

3-manifolds with 
positive Ricci 

1 

§5.1, 5.4-5.6 No Local Collapsing 

Semester 2 

§7.1-7.3 

High Dimensional Ricci Flow 

i 
§8.1-8.4 

Singularity Analysis 

I 

§4.1-4.4 

Ricci Solitons 

§6.1-6.3, 6.5-6.7 

Pre-singularity Analysis 

§9.1-9.3, 9.5-9.6 
Ancient Solutions 

§10.1-10.5 Differential Harnack Estimates 



Notat ion and Symbols 

Here we list some of the notation and symbols used throughout the book. 

Area 

dA 

ASCR 

AVR 

B(p,r) 
bounded curvature 

const 

Cut (p) 

V 

= 

d 

div 

int 

A, AL , Ad 

L 

LHS 

H 

Hess (/) or vv/ 

area of a surface or volume of a hypersurface 

area form (volume form in dimension 2) 

asymptotic scalar curvature ratio 

asymptotic volume ratio 

ball of radius r centered at p 

bounded sectional curvature 

constant 

cut locus of p 

Christoffel symbols 

covariant derivative 

defined to be equal to 

distance 

divergence 

dot product or multiplication 
interior 

Laplacian, Lichnerowicz, Hodge Laplacians 

length 

left-hand side 

mean curvature 

Hessian of / 

XXXV 
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g(X,Y) = (X,Y) 

Ki 

log 

X 

J 
£ 
C 
v 

ODE / ODI 

PDE 

RF 
RHS 

R, Re, Rm 
Ri 
h 

singularity model 
S(p,r) 

tr or Trace 

Vol 

d\i 

da 

W, k,p 
loc 

metric or inner product 

|Rm| {xi,U) 
natural logarithm 

Perelman's energy, entropy functional 

a time interval for the Ricci flow 

a time interval for the backward Ricci flow 
reduced distance or ^-function 
Lie derivative or £-length 

unit outward normal 

ordinary differential equation / inequality 

partial differential equation 

Ricci flow 

right-hand side 

scalar, Ricci and Riemann curvature tensors 

JX \pCi-, T'i) 

second fundamental form 
a limit of dilations of a singular solution 
distance sphere 

trace 

volume of a manifold 

volume form 

volume form on boundary or hypersurface 

volume of the unit Euclidean n-ball 

volume of the unit Euclidean (n — 1)-sphere 

Sobolev space of functions with < k derivatives in Lp 

space of functions locally in Wk,p 

dual 1-form to the vector field X 
dual vector field to the 1-form a 



This page intentionally left blank



Bibliography 

Abresch, U.; Langer, J. The normalized curve shortening flow and homothetic solu
tions. J. Differential Geom. 23 (1986), no. 2, 175-196. 

Agol, Ian. Ian AgoVs Research Blog. http://www2.math.uic.edu/~agol/blog/blog. 
html. 

Aleksandrov, A. D. Vnutrennyaya Geometriya Vypuklyh Poverhnosteui. (Russian) 
[Intrinsic Geometry of Convex Surfaces] OGIZ, Moscow-Leningrad, 1948. 

Aleksandrov, A. D.; Zalgaller, V. A. Intrinsic geometry of surfaces. Translated from 
the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 15, 
American Mathematical Society, Providence, R.I., 1967. 

Alekseevskii, D. V. Riemannian spaces with unusual holonomy groups. (Russian) 
Funkcional. Anal, i Prilovzen 2 (1968), no. 2, 1-10. 

Altschuler, Steven; Angenent, Sigurd B.; Giga, Yoshikazu. Mean curvature flow 
through singularities for surfaces of rotation. J. Geom. Anal. 5 (1995), no. 3, 293-
358. 

Altschuler, Steven J.; Grayson, Matthew A. Shortening space curves and flow 
through singularities. J. Differential Geom. 35 (1992), no. 2, 283-298. 

Alvarez, E.; Kubyshin, Y. Is the string coupling constant invariant under T-duality? 
hep-th/9610032. 

Anderson, Greg; Chow, Bennett. A pinching estimate for solutions of the linearized 
Ricci flow system on 3-manifolds, Calculus of Variations 23 (2005), no. 1, 1-12. 

Anderson, Michael T. Short geodesies and gravitational instantons. J. Differential 
Geom. 31 (1990), no. 1, 265-275. 

Anderson, Michael T. Geometrization of 3-manifolds via the Ricci flow. Notices 
Amer. Math. Soc. 51 (2004), no. 2, 184-193. 

Anderson, Michael T. Remarks on Perelman's papers. http://www.math.sunysb. 
edu/ ~ anderson/papers. ht ml. 

Andrews, Ben. Entropy estimates for evolving hypersurfaces. Comm. Anal. Geom. 
2 (1994), no. 1, 53-64. 

Andrews, Ben. Harnack inequalities for evolving hypersurfaces. Math. Z. 217 (1994), 
no. 2, 179-197. 

573 



574 Bibliography 

[15] Andrews, Ben. Contraction of convex hypersurfaces by their affine normal J. Dif
ferential Geom. 43 (1996), no. 2, 207-230. 

[16] Andrews, Ben. Evolving convex curves. Calc. Var. Partial Differential Equations 7 
(1998), no. 4, 315-371. 

[17] Andrews, Ben. Gauss curvature flow: the fate of the rolling stones. Invent. Math. 
138 (1999), no. 1, 151-161. 

[18] Andrews, Ben. Motion of hypersurfaces by Gauss curvature. Pacific J. Math. 195 
(2000), no. 1, 1-34. 

[19] Andrews, Ben. Non-convergence and instability in the asymptotic behaviour of curves 
evolving by curvature. Comm. Anal. Geom. 10 (2002), no. 2, 409-449. 

[20] Andrews, Ben. Classification of limiting shapes for isotropic curve flows. J. Amer. 
Math. Soc. 16 (2003), no. 2, 443-459 (electronic). 

[21] Andrews, Ben. Personal communication about his Poincare-type inequality. 

[22] Andrews, Ben. Personal communication about the cross curvature flow. 

[23] Angenent, Sigurd B. Shrinking doughnuts. Nonlinear diffusion equations and their 
equilibrium states, 3 (Gregynog, 1989), 21-38, Progr. Nonlinear Differential Equa
tions Appl., 7, Birkhauser Boston, Boston, MA, 1992. 

[24] Angenent, Sigurd B. On the formation of singularities in the curve shortening flow. 
J. Differential Geom. 33 (1991), no. 3, 601-633. 

[25] Angenent, Sigurd B.; Knopf, Dan. An example of neckpinching for Ricci flow on 
Sn+1. Math. Res. Lett. 11 (2004), no. 4, 493-518. 

[26] Angenent, Sigurd B.; Knopf, Dan. Precise asymptotics of the Ricci flow neckpinch. 
arXiv:math.DG/0511247. 

[27] Angenent, Sigurd B.; Velazquez, J. J. L. Degenerate neckpinches in mean curvature 
flow. J. Reine Angew. Math. 482 (1997), 15-66. 

[28] Angenent, S. B.; Velazquez, J. J. L. Asymptotic shape of cusp singularities in curve 
shortening. Duke Math. J. 77 (1995), no. 1, 71-110. 

[29] Aubin, Thierry. Equations differentielles non lineaires et probleme de Yamabe con-
cernant la courbure scalaire. J. Math. Pures Appl. (9), 55 (1976), no. 3, 269-296. 

[30] Aubin, Thierry. Nonlinear analysis on manifolds. Monge-Ampere equations. 
Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York, 
1982. 

[31] Aubin, Thierry. Some nonlinear problems in Riemannian geometry. Springer Mono
graphs in Mathematics. Springer-Verlag, Berlin, 1998. 

[32] Auchmuty, Giles; Bao, David. Harnack-type inequalities for evolution equations. 
Proc. Amer. Math. Soc. 122 (1994), no. 1, 117-129. 

[33] Baird, Paul; Danielo, Laurent. On the construction of Ricci solitons from semi-
conformal maps. Preprint. 

[34] Bakas, Ioannis. Renormalization group flows and continual Lie algebras. arXiv:hep-
th/0307154. 

[35] Bakas, Ioannis. Ricci flows and infinite dimensional algebras. arXiv:hep-th/0312274. 

[36] Bakas, Ioannis. Ricci flows and their integrability in two dimensions. arXivihep-
th/0410093. 

[37] Bakry, D.; Concordet, D.; Ledoux, M. Optimal heat kernel bounds under logarithmic 
Sobolev inequalities. ESAIM Probab. Statist. 1 (1995/97), 391-407 (electronic). 



Bibliography 575 

Bakry, D.; Qian, Z. Hamack inequalities on a manifold with positive or negative 
Ricci curvature. Rev. Mat. Iberoamericana 15 (1999), 143-179. 

Bando, Shigetoshi. On the classification of three-dimensional compact Kaehler man
ifolds of nonnegative bisectional curvature. J. Differential Geom. 19 (1984), no. 2, 
283-297. 

Bando, Shigetoshi. Real analyticity of solutions of Hamilton's equation, Math. Zeit. 
195 (1987), 93-97. 

Barenblatt, Grigory I. On self-similar motions of compressible fluid in a porous 
medium. Prikladnaya Matematika i Mekhanika (Applied Mathematics and Mechan
ics (PMM)), 16 (1952), No. 6, 679-698 (in Russian). 

Bartz, J.; Struwe, Michael.; Ye, Rugang. A new approach to the Ricci flow on S2. 
Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 21 (1994), no. 3, 475-482. 

Beckner, William; Pearson, Michael. On sharp Sobolev embedding and the logarith
mic Sobolev inequality. Bull. London Math. Soc. 30 (1998), no. 1, 80-84. 

Bemelmans, Josef; Min-Oo, Maung; Ruh, Ernst A. Smoothing Riemannian metrics, 
Math. Z. 188 (1984), 69-74. 

Benedetti, Riccardo; Petronio, Carlo. Lectures on hyperbolic geometry. Universitext. 
Springer-Verlag, Berlin, 1992. 

Berger, Marcel. Sur les groupes d'holonomie homogene des varietes a connexion 
affine et des varietes riemanniennes. (French) Bull. Soc. Math. Prance 83 (1955), 
279-330. 

Berger, Marcel. Les varietes riemanniennes (l/4)-pincees. Ann. Scuola Norm. Sup. 
Pisa. CI. Sci. 14 (1960), 161-170. 

Berger, Marcel. A panoramic view of Riemannian geometry. Springer-Verlag, Berlin, 
2003. 

Berger, Marcel; Gauduchon, Paul; Mazet, Edmond. Le spectre d'une variete rieman-
nienne. (French) Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-
New York, 1971. 

Berline, Nicole; Getzler, Ezra; Vergne, Michele. Heat kernels and Dirac opera
tors. Grundlehren der Mathematischen Wissenschaften 298. Springer-Verlag, Berlin, 
1992. 

Besse, Arthur L. Einstein manifolds. Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag, 
Berlin, 1987. 

Bianchi, Luigi. On the three-dimensional spaces which admit a continuous group of 
motions. Gen. Relativity Gravitation 33 (2001), no. 12, 2171-2253 (2002). Transla
tion of Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. 
(Italian) [J] Mem. Soc. Ital. Scienze (3) 11 (1897), 267-352. 

Bishop, Richard L.; Crittenden, Richard J. Geometry of manifolds. Reprint of the 
1964 original. AMS Chelsea Publishing, Providence, RI, 2001. 

Bochner, Salomon. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 
(1946), 776-797. 

Bochner, Salomon. Curvature and Betti numbers. Ann. of Math. (2) 49 (1948), 379-
390. 

Bourguignon, Jean-Pierre. Ricci curvature and Einstein metrics. Global differential 
geometry and global analysis (Berlin, 1979), pp. 42-63, Lecture Notes in Math., 
838, Springer, Berlin-New York, 1981. 



576 Bibliography 

[57] Bourguignon, Jean-Pierre; Ezin, Jean-Pierre. Scalar curvature functions in a confor-
mal class of metrics and conformal transformations. Trans. Amer. Math. Soc. 301 
(1987), no. 2, 723-736. 

[58] Brakke, Kenneth A. The motion of a surface by its mean curvature. Mathematical 
Notes, 20, Princeton University Press, Princeton, N.J., 1978. 

[59] Brendle, Simon. Global existence and convergence for a higher order flow in confor
mal geometry. Ann. of Math. (2) 158 (2003), no. 1, 323-343. 

[60] Bryant, Robert. Unpublished results on Ricci solitons. 

[61] Bryant, Robert. Gradient Kahler Ricci Solitons. arXiv:math.DG/0407453. 

[62] Buckland, John A. Short-time existence of solutions to the cross curvature flow on 
3-manifolds. Proc. Amer. Math. Soc. 134 (2006), no. 6, 1803-1807. 

[63] Burago, D.; Burago, Y.; Ivanov, S. A course in metric geometry, Grad 
Studies Math. 33, Amer. Math. Soc, Providence, RI, 2001. Corrections 
of typos and small errors to the book "A Course in Metric Geometry": 
http://www.pdmi. ras.ru/staff/burago.html#English. 

[64] Burago, Yu.; Gromov, M.; Perelman, G. A. D. Aleksandrov spaces with curvatures 
bounded below. (Russian) Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3-51, 222; 
translation in Russian Math. Surveys 47 (1992), no. 2, 1-58. 

[65] Buscher, T. H. A symmetry of the string background field equations. Phys. Lett. 
B194 (1987), 59-62. 

[66] Buscher, T. H. Path integral derivation of quantum duality in nonlinear sigma mod
els. Phys. Lett. B201 (1988), 466. 

[67] Buser, Peter. A geometric proof of Bieberbach's theorems on crystallographic groups. 
Enseign. Math. (2) 31 (1985), no. 1-2, 137-145. 

[68] Buser, Peter; Karcher, Hermann. Gromov's almost flat manifolds. Asterisque, 81, 
Societe Mathematique de Prance, Paris, 1981. 

[69] Caffarelli, Luis A.; Cabre, Xavier. Fully nonlinear elliptic equations. American Math
ematical Society Colloquium Publications, 43, American Mathematical Society, 
Providence, RI, 1995. 

[70] Calabi, Eugenio. On Ricci curvature and geodesies. Duke Math. J. 34 (1967), 667-
676. 

[71] Calabi, Eugenio. Metriques kdhleriennes et fibres holomorphes. (French) [Kahler 
metrics and holomorphic vector bundles], Ann. Sci. Ecole Norm. Sup. (4) 12 (1979), 
no. 2, 269-294. 

[72] Cannon, John Rozier. The one-dimensional heat equation. With a foreword by Felix 
E. Browder. Encyclopedia of Mathematics and its Applications, 23, Addison-Wesley 
Publishing Company, Advanced Book Program, Reading, MA, 1984. 

[73] Cao, Huai-Dong. Deformation of Kahler metrics to Kahler-Einstein metrics on com
pact Kahler manifolds. Invent. Math. 81 (1985), no. 2, 359-372. 

[74] Cao, Huai-Dong. On Harnack's inequalities for the Kdhler-Ricci flow. Invent. ma,th. 
109 (1992), 247-263. 

[75] Cao, Huai-Dong. Existence of gradient Kdhler-Ricci solitons. Elliptic and parabolic 
methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, 
1996. 

[76] Cao, Huai-Dong. Limits of solutions to the Kdhler-Ricci flow. J. Differential Geom. 
45 (1997), no. 2, 257-272. 



Bibliography 577 

Cao, Huai-Dong. On dimension reduction in the Kdhler-Ricci flow. Comm. Anal. 
Geom. 12 (2004), no. 1-2, 305-320. 

Cao, Huai-Dong; Chen, Bing-Long; Zhu, Xi-Ping. Ricci flow on compact Kdhler 
manifolds of positive bisectional curvature. C. R. Math. Acad. Sci. Paris 337 (2003), 
no. 12, 781-784. 

Cao, Huai-Dong; Chow, Bennett. Compact Kdhler manifolds with nonnegative cur
vature operator. Invent. Math. 83 (1986), no. 3, 553-556. 

Cao, Huai-Dong; Chow, Bennett. Recent developments on the Ricci flow. Bull. Amer. 
Math. Soc. (N.S.) 36 (1999), no. 1, 59-74. 

Cao, Huai-Dong; Chow, Bennett; Chu, Sun-Chin; Yau, Shing-Tung, editors. Col
lected papers on Ricci flow. Internat. Press, Somerville, MA, 2003. 
Cao, Huai-Dong; Hamilton, Richard S. Gradient Kdhler-Ricci solitons and periodic 
orbits. Comm. Anal. Geom. 8 (2000), no. 3, 517-529. 

Cao, Huai-Dong; Hamilton, Richard S.; Ilmanen, Tom. Gaussian densities and sta
bility for some Ricci solitons. arXiv:math.DG/0404165. 

Cao, Huai-Dong; Ni, Lei. Matrix Li-Yau-Hamilton estimates for the heat equation 
on Kdhler manifolds. Math. Ann. 331 (2005), 795-807. 

Cao, Huai-Dong; Sesum, Natasa. The compactness result for Kdhler Ricci solitons. 
arXiv:math.DG/0504526. 

Cao, Huai-Dong; Zhu, Xi-Ping. A Complete Proof of the Poincare and Geometriza-
tion Conjectures—application of the Hamilton-Perelman theory of the Ricci flow. 
Asian J. Math. 10 (2006), 165-498. 

Cao, Xiaodong. Isoperimetric estimate for the Ricci flow on S2 x S1. Comm. Anal. 
Geom. 13 (2005), 727-740. 

Cao, Xiaodong. Eigenvalues (—A + "f) of manifolds with nonnegative curvature 
operator. Preprint. 

Cao, Xiaodong. Compact gradient shrinking Ricci solitons with positive curvature 
operator. Preprint. 

Cao, Xiaodong. Dimension reduction under the Ricci flow on manifolds with positive 
curvature operator. Preprint. 

Carfora, M.; Isenberg, James; Jackson, Martin. Convergence of the Ricci flow for 
metrics with indefinite Ricci curvature. J. Diff. Geom. 31 (1990), 249-263. 
Carfora; M.; Marzuoli, A. Model geometries in the space of Riemannian structures 
and Hamilton's flow. Classical Quantum Gravity 5 (1988), no. 5, 659-693. 
Chang, Shu-Cheng; Chow, Bennett; Chu, Sun-Chin; Lin, Chang-Shou, editors. Geo
metric Evolution Equations. National Center for Theoretical Sciences Workshop on 
Geometric Evolution Equations, National Tsing Hua University, Hsinchu, Taiwan, 
July 15-August 14, 2002. Contemporary Mathematics 367, American Mathematical 
Society, January 2005. 

Chang, Shu-Cheng; Cheng, J. H. The Harnack Estimate for the Yamabe Flow on 
CR Manifolds of Dimension 3. Annals of Global Analysis and Geometry 21 , No. 2 
(2002), 111-121. 

Chang, Shu-Cheng; Lu, Peng. Evolution of Yamabe constant under Ricci flow. 
arXiv:math.DG/0604546. 

Chang, Sun-Yung Alice. The Moser-Trudinger inequality and applications to some 
problems in conformal geometry. Nonlinear partial differential equations in differen
tial geometry (Park City, UT, 1992), 65-125, IAS/Park City Math. Ser., 2, Amer. 
Math. Soc, Providence, RI, 1996. 



578 Bibliography 

[97] Chang, Sun-Yung Alice. Non-linear elliptic equations in conformal geometry. Zurich 
Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 
2004. 

[98] Chau, Albert. Convergence of the Kdhler-Ricci flow on non-compact Kdhler mani
folds. J. Differential Geom. 66 (2004), no. 2, 211-232. 

[99] Chau, Albert. Stability of the Kdhler-Ricci flow at complete non-compact Kdhler Ein
stein metrics. Geometric evolution equations, 43-62, Contemp. Math., 367, Amer. 
Math. Soc, Providence, RI, 2005. 

[100] Chau, Albert; Schnuerer, Oliver C. Stability of gradient Kdhler-Ricci solitons. 
arXiv:math.DG/0307293. 

[101] Chau, Albert; Tarn, Luen-Fai. Gradient Kdhler-Ricci solitons and a uniformization 
conjecture. arXiv.math.DG/0310198. 

[102] Chau, Albert; Tarn, Luen-Fai. A note on the uniformization of gradient Kdhler-Ricci 
solitons. Math. Res. Lett. 12 (2005), no. 1, 19-21. 

[103] Chau, Albert; Tarn, Luen-Fai. On the complex structure of Kdhler manifolds with 
nonnegative curvature. arXiv:math.DG/0504422. 

[104] Chau, Albert; Tarn, Luen-Fai. Non-negatively curved Kdhler manifolds with average 
quadratic curvature decay. arXiv:math.DG/0510252. 

[105] Chavel, Isaac. Eigenvalues in Riemannian geometry. Including a chapter by Burton 
Randol. With an appendix by Jozef Dodziuk. Pure and Applied Mathematics, 115, 
Academic Press, Inc., Orlando, FL, 1984. 

[106] Chavel, Isaac. Riemannian geometry — a modern introduction. Cambridge Tracts 
in Mathematics, 108, Cambridge University Press, Cambridge, 1993. 

[107] Chavel, Isaac. Isoperimetric inequalities. Differential geometric and analytic perspec
tives. Cambridge Tracts in Mathematics, 145, Cambridge University Press, Cam
bridge, 2001. 

[108] Cheeger, Jeff. Finiteness theorems for Riemannian manifolds. Amer. J. Math. 92 
(1970), 61-74. 

[109] Cheeger, Jeff; Colding, Tobias H. Almost rigidity of warped products and the struc
ture of spaces with Ricci curvature bounded below. C. R. Acad. Sci. Paris Ser. I Math. 
320 (1995), no. 3, 353-357. 

[110] Cheeger, Jeff; Colding, Tobias H. On the structure of spaces with Ricci curvature 
bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406-480. 

[Ill] Cheeger, Jeff; Colding, Tobias H.; Tian, Gang. On the singularities of spaces with 
bounded Ricci curvature. Geom. Funct. Anal. 12 (2002), no. 5, 873-914. 

[112] Cheeger, Jeff; Ebin, David G. Comparison theorems in Riemannian geome
try. North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., 
Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. 

[113] Cheeger, Jeff; Gromoll, Detlef. The splitting theorem for manifolds of nonnegative 
Ricci curvature. J. Differential Geometry 6 (1971/72), 119-128. 

[114] Cheeger, Jeff; Gromoll, Detlef. On the structure of complete manifolds of nonnegative 
curvature. Ann. of Math. (2) 96 (1972), 413-443. 

[115] Cheeger; Jeff; Gromov, Mikhail. Collapsing Riemannian manifolds while keeping 
their curvature bounded, /, J. Diff. Geom. 23 (1986), 309-346. 

[116] Cheeger; Jeff; Gromov, Mikhail. Collapsing Riemannian manifolds while keeping 
their curvature bounded, II, J. Diff. Geom. 32 (1990), 269-298. 



Bibliography 579 

[117] Cheeger; Jeff; Gromov, Mikhail; Taylor, Michael. Finite propagation speed, kernel 
estimates for functions of the Laplace operator, and the geometry of complete Rie-
mannian manifolds, J. Differential Geom. 17 (1982), 15-53. 

118] Cheeger; Jeff; Tian, Gang. Preprint. 

119] Cheeger; Jeff; Yau, Shing-Tung. A lower bound for the heat kernel. Comm. Pure 
Appl. Math. 34 (1981), no. 4, 465-480. 

120] Chen, Bing-Long; Fu, Xiao-Yong; Yin, Le; Zhu, Xi-Ping. Sharp Dimension Esti
mates of Holomorphic Functions and Rigidity. arXiv:math.DG/0311164. 

121] Chen, Bing-Long; Tang, Siu-Hung; Zhu, Xi-Ping. A uniformization theorem for com
plete non-compact Kdhler surfaces with positive bisectional curvature. J. Differential 
Geom. 67 (2004), no. 3, 519-570. 

122] Chen, Bing-Long; Zhu, Xi-Ping. Complete Riemannian manifolds with pointwise 
pinched curvature. Invent. Math. 140 (2000), no. 2, 423-452. 

123] Chen, Bing-Long; Zhu, Xi-Ping. A gap theorem for complete noncompact manifolds 
with nonnegative Ricci curvature. Comm. Anal. Geom. 10 (2002), no. 1, 217-239. 

124] Chen, Bing-Long; Zhu, Xi-Ping. A property of Kahler-Ricci solitons on complete 
complex surfaces. Geometry and nonlinear partial differential equations (Hangzhou, 
2001), 5-12, AMS/IP Stud. Adv. Math., 29, Amer. Math. Soc, Providence, RI, 
2002. 

125] Chen, Bing-Long; Zhu, Xi-Ping. On complete noncompact Kdhler manifolds with 
positive bisectional curvature. Math. Ann. 327 (2003), no. 1, 1-23. 

126] Chen, Bing-Long; Zhu, Xi-Ping. Ricci Flow with Surgery on Four-manifolds with 
Positive Isotropic Curvature. arXiv:math.DG/0504478. 

127] Chen, Bing-Long; Zhu, Xi-Ping. Uniqueness of the Ricci Flow on Complete Non-
compact Manifolds. arXiv:math.DG/0505447. 

128] Chen, Haiwen. Pointwise quarter-pinched 4-manifolds. Ann. Global Anal. Geom. 9 
(1991), 161-176. 

129] Chen, Xiuxiong; Lu, Peng; Tian, Gang. A note on uniformization of Riemann sur
faces by Ricci flow. arXiv:math.DG/0505163. Proc. AMS, to appear. 

130] Chen, Xiuxiong; Tian, Gang. Ricci flow on Kdhler-Einstein surfaces. Invent. Math. 
147 (2002), no. 3, 487-544. 

131] Chen, Xiuxiong; Tian, Gang. Ricci flow on Kdhler-Einstein manifolds. Duke Math. 
J., to appear. 

132] Chen, Yun Mei; Struwe, Michael. Existence and partial regularity results for the heat 
flow for harmonic maps. Math. Z. 201 (1989), no. 1, 83-103. 

133] Cheng, Hsiao-Bing. Li- Yau-Hamilton estimate for the Ricci flow, Thesis, Harvard 
University, April 2003. 

134] Cheng, Shiu-Yuen. Eigenvalue comparison theorems and its geometric applications. 
Math. Zeit. 143 (1975), no. 3, 289-297. 

135] Cheng, Shiu-Yuen; Li, Peter; Yau, Shing-Tung. On the upper estimate of the heat 
kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021-
1063. 

136] Cheng, Shiu-Yuen; Yau, Shing-Tung. Differential equations on Riemannian mani
folds and their geometric applications. Comm. Pure Appl. Math. 28 (1975), no. 3, 
333-354. 

137] Chern, Shiing-Shen. Complex manifolds without potential theory. With an appendix 
on the geometry of characteristic classes. Second edition. Universitext, Springer-
Verlag, New York-Heidelberg, 1979. 



580 Bibliography 

[138] Choi, Hyeong In; Wang, Ai Nung. A first eigenvalue estimate for minimal hypersur-
faces. J. Differential Geom. 18 (1983), 559-562. 

[139] Chou, Kai-Seng; Zhu, Xi-Ping. The curve shortening problem. Chapman &; Hall/ 

CRC, Boca Raton, FL, 2001. 

[140] Chow, Bennett. Deforming convex hypersurfaces by the nth root of the Gaussian 
curvature. J. Differential Geom. 22 (1985), no. 1, 117-138. 

[141] Chow, Bennett. The Ricci flow on the 2-sphere. J. Differential Geom. 33 (1991), 
no. 2, 325-334. 

[142] Chow, Bennett. On the entropy estimate for the Ricci flow on compact 2-orbifolds. 
J. Differential Geom. 33 (1991), no. 2, 597-600. 

[143] Chow, Bennett. On Hamack's inequality and entropy for the Gaussian curvature 
flow. Comm. Pure Appl. Math. 44 (1991), no. 4, 469-483. 

[144] Chow, Bennett. The Yamabe flow on locally conformally flat manifolds with positive 
Ricci curvature. Comm. Pure Appl. Math. 45 (1992), no. 8, 1003-1014. 

[145] Chow, Bennett. Geometric aspects of Aleksandrov reflection and gradient estimates 
for parabolic equations. Comm. Anal. Geom. 5 (1997), no. 2, 389-409. 

[146] Chow, Bennett. Interpolating between Li-Yau's and Hamilton's Hamack inequalities 
on a surface, J. Partial Diff. Equations (China) 11 (1998), 137-140. 

[147] Chow, Bennett. Ricci flow and Einstein metrics in low dimensions. Surveys in dif
ferential geometry: essays on Einstein manifolds, pp. 187-220, Surv. Differ. Geom., 
VI , Int. Press, Boston, MA, 1999. 

[148] Chow, Bennett. A gradient estimate for the Ricci-Kahler flow. Ann. Global 
Anal. Geom. 19 (2001), no. 4, 321-325. 

[149] Chow, Bennett. A Survey of Hamilton's Program for the Ricci Flow on 3-manifolds. 
In Geometric Evolution Equations, Contemporary Mathematics, eds. S.-C. Chang, 
B. Chow, S.-C. Chu, C.-S. Lin, American Mathematical Society, 2005. 

[150] Chow, Bennett; Chu, Sun-Chin. A geometric interpretation of Hamilton's Hamack 
inequality for the Ricci flow, Math. Res. Lett. 2 (1995), 701-718. 

[151] Chow, Bennett; Chu, Sun-Chin. A geometric approach to the linear trace Hamack 
inequality for the Ricci flow, Math. Res. Lett. 3 (1996), 549-568. 

[152] Chow, Bennett; Chu, Sun-Chin. Spacetime formulation of Hamack inequalities for 
curvature flows of hypersurfaces. Journal of Geometric Analysis 11 (2001), 219-231. 

[153] Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isen-
berg, Jim; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei. The Ricci flow: 
techniques and applications. In preparation. 

[154] Chow, Bennett; Glickenstein, David. A semi-discrete, linear curve shortening fl,ow. 
American Math. Monthly, to appear. 

[155] Chow, Bennett; Glickenstein, David; Lu, Peng. Metric transformations under col
lapsing of Riemannian manifolds. Math. Research Letters 10 (2003), 737-746. 

[156] Chow, Bennett; Glickenstein, David; Lu, Peng. Collapsing sequences of solutions to 
the Ricci flow on 3-manifolds with almost nonnegative curvature. Math. Zeit. (online 
first, 25 May 2006), arXiv:math.DG/0305228. 

[157] Chow, Bennett; Guenther, Christine. Monotonicity formulae for parabolic equations 
in geometry. In preparation. 

[158] Chow, Bennett; Gulliver, Robert. Aleksandrov reflection and nonlinear evolution 
equations. I. The n-sphere and n-ball. Calc. Var. Partial Differential Equations 4 
(1996), no. 3, 249-264. 



Bibliography 581 

[159; 

[160 

[161 

[162 

[163 

[164 

[165 

[166 

[167 

[168 

[169; 

[170 

[171 

[172 

[173; 

[174 

[175 

[176 

[177 

[178; 

[179" 

Chow, Bennett; Gulliver, Robert. Aleksandrov reflection and geometric evolution of 
hyper surf aces. Comm. Anal. Geom. 9 (2001), no. 2, 261-280. 

Chow, Bennett; Hamilton, Richard S. Constrained and linear Harnack inequalities 
for parabolic equations, Invent. Math. 129 (1997), 213-238. 

Chow, Bennett; Hamilton, Richard S. The Cross Curvature Flow of 3-manifolds 
with negative sectional curvature. Turkish Journal of Mathematics 28 (2004), 1-10. 

Chow, Bennett; Knopf, Dan. New Li-Yau-Hamilton inequalities for the Ricci flow 
via the space-time approach. J. of Diff. Geom. 60 (2002), 1-54. 

Chow, Bennett; Knopf, Dan. The Ricci flow: An introduction. Mathematical Sur
veys and Monographs, AMS, Providence, RI, 2004. 

Chow, Bennett; Knopf, Dan; Lu, Peng. Hamilton's injectivity radius estimate for 
sequences with almost nonnegative curvature operators. Comm. Anal. Geom. 10 
(2002), no. 5, 1151-1180. 

Chow, Bennett; Lu, Peng. The maximum principle for systems of parabolic equations 
subject to an avoidance set. Pacific J. Math. 214 (2004), no. 2, 201-222. 

Chow, Bennett; Lu, Peng. On the asymptotic scalar curvature ratio of com
plete Type I-like ancient solutions to the Ricci flow on non-compact 3-manifolds. 
Comm. Anal. Geom. 12 (2004), 59-91. 

Chow, Bennett; Lu, Peng. Unpublished. 

Chow, Bennett; Luo, Feng. Combinatorial Ricci Flows on Surfaces. J. Differential 
Geom. 63 (2003), 97-129. 

Chow, Bennett; Wu, Lang-Fang. The Ricci flow on compact 2-orbifolds with curva
ture negative somewhere. Comm. Pure Appl. Math. 44 (1991), no. 3, 275-286. 

Chow, Bennett; Yang, Deane. Rigidity of nonnegatively curved compact quater-
nionic-Kahler manifolds. J. Differential Geom. 29 (1989), no. 2, 361-372. 

Chu, Sun-Chin. Geometry of 3-dimensional gradient solitons with positive curvature. 
Comm. Anal. Geom. 13 (2005) 129-150. 

Chu, Sun-Chin. Basic Properties of Gradient Ricci Solitons. In Geometric Evolution 
Equations, Contemporary Mathematics, eds. S.-C. Chang, B. Chow, S.-C. Chu, C -
S. Lin, American Mathematical Society, 2005. 

Cohn-Vossen, Stefan. Kurzeste Wege und Totalkriimmung auf Flachen. Compos. 
Math. 2 (1935), 69-133. 

Colding, Tobias H.; Kleiner, Bruce. Singularity structure in mean curvature flow of 
mean convex sets. Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 121-124. 
arXiv:math.DG/0310242. 

Colding, Tobias; Minicozzi, William P. II. Harmonic functions on manifolds. Ann. 
of Math. (2) 146 (1997), no. 3, 725-747. 

Colding, Tobias; Minicozzi, William P. II. Estimates for the extinction time for the 
Ricci flow on certain 3-manifolds and a question of Perelman. J. Amer. Math. Soc. 
18 (2005), 561-569. 

Cooper, Daryl; Hodgson, Craig D.; Kerckhoff, Steven P. Three-dimensional orb-
ifolds and cone-manifolds. With a postface by Sadayoshi Kojima. MS J Memoirs, 5, 
Mathematical Society of Japan, Tokyo, 2000. 

Cooper, Daryl; Rivin, Igor. Combinatorial scalar curvature and rigidity of ball pack
ings. Math. Res. Lett. 3 (1996), no. 1, 51-60. 

Cortissoz, Jean. On the Ricci flow in the rotationally symmetric two-ball. arXiv: 
math.DG/0509128. 



582 Bibliography 

[180] Courant, R.; Hilbert, David. Methods of mathematical physics. Vols. I and II. Inter-
science Publishers, Inc., New York, N.Y., 1953 and 1962 (reprinted in 1989). 

[181] Croke, Christopher B. A sharp four-dimensional isoperimetric inequality. Comment. 
Math. Helv. 59 (1984), no. 2, 187-192. 

[182] Dai, Xianzhe; Ma, Li. Mass under the Ricci flow. arXiv:math.DG/0510083. 

[183] Dai, Xianzhe; Wei, Guofang; Ye, Rugang. Smoothing Riemannian metrics with Ricci 
curvature bounds. Manuscripta Math. 90 (1996), 46-61. 

[184] Daskalopoulos, Panagiota; del Pino, Manuel A. On a singular diffusion equation. 
Comm. Anal. Geom. 3 (1995), 523-542. 

[185] Daskalopoulos, Panagiota; Hamilton, Richard S. The free boundary in the Gauss 
curvature flow with flat sides. J. Reine Angew. Math. 510 (1999), 187-227. 

[186] Daskalopoulos, Panagiota; Hamilton, Richard S. Geometric estimates for the loga
rithmic fast diffusion equation. Comm. Anal. Geom. 12 (2004), 143-164. 

[187] Daskalopoulos, Panagiota; Lee, Ki-Ahm. Worn stones with flat sides all time regu
larity of the interface. Invent. Math. 156 (2004), no. 3, 445-493. 

[188] Davies, E. B. Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 
92. Cambridge University Press, Cambridge, 1989. 

[189] Derdzinski, Andrzej. Ricci flow seminar notes, http://www.math.ohio-state.edu/ 
~andrzej/rfs.html. 

[190] Derdzinski, Andrzej; Maschler, G. Compact Ricci solitons. In preparation. 

[191] DeTurck, Dennis M. Deforming metrics in the direction of their Ricci tensors. J. 
Differential Geom. 18 (1983), no. 1, 157-162. 

[192] DeTurck, Dennis M. Deforming metrics in the direction of their Ricci tensors, im
proved version. In Collected Papers on Ricci Flow, eds. H.-D. Cao, B. Chow, S.-
C. Chu, and S.-T. Yau, Internat. Press, Somerville, MA, 2003. 

[193] Ding, Yu. Notes on Perelman's second paper, http://math.uci.edu/~yding/ 
perelman.pdf. 

[194] do Carmo, Manfredo Perdigao. Riemannian geometry. Translated from the sec
ond Portuguese edition by Francis Flaherty, Mathematics: Theory &; Applications, 
Birkhauser Boston, Inc., Boston, MA, 1992. 

[195] Donaldson, Simon K. Anti self-dual Yang-Mills connections over complex algebraic 
surfaces and stable vector bundles. Proc. London Math. Soc. (3) 50 (1985), no. 1, 
1-26. 

[196] Donaldson, Simon K. Infinite determinants, stable bundles and curvature. Duke 
Math. J. 54 (1987), no. 1, 231-247. 

[197] Donnelly, Harold. Harmonic functions on manifolds of nonnegative Ricci curvature. 
Internat. Math. Res. Notices 8 (2001), 429-434. 

[198] Drees, Giinter. Asymptotically flat manifolds of nonnegative curvature. Differential 
Geom. Appl. 4 (1994), no. 1, 77-90. 

[199] Ecker, Klaus. On regularity for mean curvature flow of hyper surf aces. Calc. Var. 
Partial Differential Equations 3 (1995), no. 1, 107-126. 

[200] Ecker, Klaus. Logarithmic Sobolev inequalities on submanifolds of Euclidean space. 
J. Reine Angew. Math. 522 (2000), 105-118. 

[201] Ecker, Klaus. A local monotonicity formula for mean curvature flow. Ann. of Math. 
(2) 154 (2001), no. 2, 503-525. 



Bibliography 583 

[202; 

[203; 

[204 

[205; 

[206; 

[207; 

[208; 

[209; 

[210; 

[211 

[212 

[213; 

[214 

[215; 

[216; 

[217; 

pis; 
[219; 

[220; 

[221 

[222; 

Ecker, Klaus. Regularity theory for mean curvature flow. Progress in Nonlinear Dif
ferential Equations and their Applications, 57, Birkhauser Boston, Inc., Boston, 
MA, 2004. 

Ecker, Klaus. Local Monotonicity Formulas for some Nonlinear Diffusion Equations. 
Calculus of Variations 23 (2005) 67-81. 

Ecker, Klaus; Huisken, Gerhard. Mean curvature evolution of entire graphs. Ann. of 
Math. (2) 130 (1989), no. 3, 453-471. 

Ecker, Klaus; Huisken, Gerhard. Interior estimates for hypersurfaces moving by 
mean curvature. Invent. Math. 105 (1991), no. 3, 547-569. 

Ecker, Klaus; Knopf, Dan; Ni, Lei; Topping, Peter. Heatballs and local monotonicity 
and mean value formulas for evolving Riemannian manifolds. In preparation. 

Eells, James; Lemaire, Luc. Two reports on harmonic maps. World Scientific Pub
lishing Co., Inc., River Edge, NJ, 1995. 

Eells, James, Jr.; Sampson, J. H. Harmonic mappings of Riemannian manifolds. 
Amer. J. Math. 86 (1964), 109-160. 

Eguchi, T.; Hanson, A. J. Asymptotically flat self-dual solutions to Euclidean gravity. 
Ann. Physics 120 (1979), 82-106. 

Eisenhart, Luther Pfahler. Riemannian geometry. Eighth printing. Princeton Land
marks in Mathematics, Princeton Paperbacks, Princeton University Press, Prince
ton, NJ, 1997. 

Eschenburg, J.-H.; Schroeder, V.; Strake, M. Curvature at infinity of open nonneg-
atively curved manifolds. J. Differential Geom. 30 (1989), no. 1, 155-166. 

Escobedo, M.; Kavian, O. Asymptotic behaviour of positive solutions of a nonlinear 
heat equation. Houston J. Math. 14 (1988), no. 1, 39-50. 

Evans, Lawrence C. Partial differential equations. Graduate Studies in Mathematics, 
19, American Mathematical Society, Providence, RI, 1998. 

Evans, Lawrence C. A survey of entropy methods for partial differential equations. 
Bull. Amer. Math. Soc. 41 (2004), 409-438. 

Evans, Lawrence C ; Gariepy, Ronald F. Wiener's criterion for the heat equation. 
Arch. Rational Mech. Anal. 78 (1982), no. 4, 293-314. 

Fabes, Eugene B.; Garofalo, Nicola. Mean value properties of solutions to parabolic 
equations with variable coefficients. Journal of Math. Analysis and Applications 121 
(1987), 305-316. 

Fabes, Eugene B.; Stroock, Daniel W. A new proof of Moser's parabolic Hamack 
inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96 (1986), no. 4, 
327-338. 

Fan, X.-Q. Thesis, The Chinese University of Hong Kong, 2004. 

Farrell, F.T.; Ontaneda, P. A caveat on the convergence of the Ricci flow for pinched 
negatively curved manifolds. arXiv:math.DG/0311176. 

Federer, Herbert; Fleming, Wendell H. Normal and integral currents. Ann. of Math. 
(2) 72 (1960), 458-520. 

Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan. Rotationally symmetric shrinking 
and expanding gradient Kahler-Ricci solitons. J. Differential Geom. 65 (2003), no. 
2, 169-209. 

Feldman, Mikhail; Ilmanen, Tom; Ni, Lei. Entropy and reduced distance for Ricci 
expanders. arXiv:math.DG/0405036. 



584 Bibliography 

[223] Feller, William. An introduction to probability theory and its applications. Vol. I. 
Third edition. John Wiley &; Sons, Inc., New York-London-Sydney, 1968. 

[224] Fermanian; C.; Merle, Frank; Zaag, Hatem. Stability of the blow-up profile of non
linear heat equations from the dynamical system point of view. Math. Ann. 317 
(2000), no. 2, 347-387. 

[225] Firey, William J. Shapes of worn stones. Mathematika 21 (1974), 1-11. 

[226] Fischer, Arthur E. An Introduction to Conformal Ricci Flow. arXivrmath.DG/ 
0312519. 

[227] Frankel, Theodore. Manifolds with positive curvature. Pacific J. Math. 11 (1961), 
165-174. 

[228] Friedan, Daniel Harry. Nonlinear models in 2 + e dimensions. Ann. Physics 163 
(1985), no. 2, 318-419. 

[229] Friedman, Avner. Partial differential equations of parabolic type. Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 1964. 

[230] Fukaya, Kenji. A boundary of the set of Riemannian manifolds with bounded curva
tures and diameters, J. Diff. Geom. 28 (1988), 1-21. 

[231] Fulks, W. A mean value theorem for the heat equation. Proc. Amer. Math. Soc. 17 
(1966), 6-11. 

[232] Gage, Michael E.; Hamilton, Richard S. The heat equation shrinking convex plane 
curves. J. Differential Geom. 23 (1986), no. 1, 69-96. 

[233] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques. Riemannian geometry. 
Third edition. Universitext, Springer-Verlag, Berlin, 2004. 

[234] Gallot, S.; Meyer, D. Operateur de courbure et laplacien des formes differentielles 
d'une variete riemannienne. (French) J. Math. Pures Appl. (9) 54 (1975), no. 3, 
259-284. 

[235] Gao, L. Zhiyong; Yau, Shing-Tung. The existence of negatively Ricci curved metrics 
on three-manifolds. Invent. Math. 85 (1986), no. 3, 637-652. 

[236] Garfinkle, David; Isenberg, James. Numerical Studies of the Behavior of Ricci Flow. 
In Geometric Evolution Equations, Contemporary Mathematics, eds. S.-C. Chang, 
B. Chow, S.-C. Chu, C.-S. Lin, American Mathematical Society, 2005. 

[237] Garofalo, Nicola; Lanconelli, Ermanno. Wiener's criterion for parabolic equations 
with variable coefficients and its consequences. Trans. Amer. Math. Soc. 308 (1988), 
no. 2, 811-836. 

[238] Garofalo, Nicola; Lanconelli, Ermanno. Asymptotic behavior of fundamental solu
tions and potential theory of parabolic operators with variable coefficients. Math. 
Ann. 283 (1989), no. 2, 211-239. 

[239] Gastel, A.; Krong, M. A family of expanding Ricci solitons, to appear in Non
linear problems from Riemannian Geometry, in Progress in Non-linear Differential 
Equations, Birkhauser. 

[240] Gegenberg, Jack; Kunstatter, Gabor. Ricci Flow of 3-D Manifolds with One Killing 
Vector. arXiv:hep-th/0409293. 

[241] Gidas, Basilis; Ni, Wei-Ming; Nirenberg, Louis. Symmetry and related properties via 
the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243. 

[242] Giga, Yoshikazu; Kohn, Robert V. Asymptotically self-similar blow-up of semilinear 
heat equations. Comm. Pure Appl. Math. 38 (1985), no. 3, 297-319. 

[243] Giga, Yoshikazu; Kohn, Robert V. Characterizing blowup using similarity variables. 
Indiana Univ. Math. J. 36 (1987), no. 1, 1-40. 



Bibliography 585 

Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second 
order. Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, 
2001. 

Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer in
dex theorem. Second edition. Studies in Advanced Mathematics, CRC Press, Boca 
Raton, FL, 1995. 

Glickenstein, David. Precompactness of solutions to the Ricci flow in the absence of 
injectivity radius estimates. Geom. Topol. 7 (2003), 487-510 (electronic). 

Glickenstein, David. A combinatorial Yamabe flow in three dimensions. Topology 
44 (2005), No. 4, 791-808. 

Glickenstein, David. A Maximum Principle for Combinatorial Yamabe Flow. Topol
ogy 44 (2005), No. 4, 809-825, arXiv:math.MG/0211195. 

Goldberg, Samuel I. Curvature and homology. Revised reprint of the 1970 edition. 
Dover Publications, Inc., Mineola, NY, 1998. 

Grayson, Matthew A. The heat equation shrinks embedded plane curves to round 
points. J. Differential Geom. 26 (1987), no. 2, 285-314. 

Grayson, Matthew; Hamilton, Richard S. The formation of singularities in the har
monic map heat flow. Comm. Anal. Geom. 4 (1996), no. 4, 525-546. 

Greene, Robert E. A genealogy of noncompact manifolds of nonnegative curvature: 
history and logic. Comparison geometry (Berkeley, CA, 1993-94), 99-134, Math. 
Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997. 

Greene, Robert E.; Wu, Hung-Hsi. Gap theorems for noncompact Riemannian man
ifolds. Duke Math. J. 49 (1982), no. 3, 731-756. 

Greene, Robert E.; Wu, Hung-Hsi. Lipschitz convergence of Riemannian manifolds. 
Pacific J. Math. 131 (1988), no. 1, 119-141. Addendum to "Lipschitz convergence 
of Riemannian manifolds", Pacific J. Math. 140 (1989), no. 2, 398. 

Grigor'yan, Alexander. Integral maximum principle and its applications. Proc. Roy. 
Soc. Edinburgh Sect. A 124 (1994), no. 2, 353-362. 

Grigor'yan, Alexander. Gaussian upper bounds for the heat kernel on arbitrary man
ifolds. J. Differential Geom. 45 (1997), no. 1, 33-52. 

GrigorV&n, Alexander; Noguchi, Masakazu. The heat kernel on hyperbolic space. 
Bull. London Math. Soc. 30 (1998), no. 6, 643-650. 

Gromoll, Detlef; Meyer, Wolfgang. On complete open manifolds of positive curvature. 
Ann. of Math. (2) 90 (1969), 75-90. 

Gromov, Mikhail. Almost flat manifolds, J. Differential Geom. 13 (1978), 231-241. 
Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces. 
With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French 
by Sean Michael Bates. Progress in Mathematics, 152, Birkhauser Boston, Inc., 
Boston, MA, 1999. 

Gromov, Mikhael; Lawson, H. Blaine, Jr. The classification of simply connected 
manifolds of positive scalar curvature. Ann. of Math. (2) 111 (1980), no. 3, 423-
434. 

Gromov, M.; Thurston, W. Pinching constants for hyperbolic manifolds. Invent. 
Math. 89 (1987), no. 1, 1-12. 

Groisman, Pablo; Rossi, Julio D.; Zaag, Hatem. On the dependence of the blow-up 
time with respect to the initial data in a semilinear parabolic problem. Comm. Partial 
Differential Equations 28 (2003), no. 3-4, 737-744. 



586 Bibliography 

[264] Gross, Leonard. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), no. 4, 
1061-1083. 

[265] Guenther, Christine M. The fundamental solution on manifolds with time-dependent 
metrics. J. Geom. Anal. 12 (2002), no. 3, 425-436. 

[266] Guenther, Christine; Isenberg, James; Knopf, Dan. Stability of the Ricci flow at 
Ricci-flat metrics. Comm. Anal. Geom. 10 (2002), no. 4, 741-777. 

[267] Guenther, Christine; Isenberg, James; Knopf, Dan. Asymptotic stability of Ricci 
pseudosolitons. In preparation. 

[268] Guenther, Christine; Isenberg, James. A proof of the well conjecture using Ricci 
flow. Preprint. 

[269] Guillemin, Victor; Pollack, Alan. Differential topology. Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1974. 

[270] Gursky, Matthew. The Weyl functional, de Rham cohomology, and Kahler-Einstein 
metrics. Ann. of Math. 148 (1998), 315-337. 

[271] Gursky, Matthew; Viaclovsky, Jeff. Prescribing symmetric functions of the eigenval
ues of the Ricci tensor. arXiv:math.DG/0409187. 

[272] Gutperle, Michael; Headrick, Matthew; Minwalla, Shiraz; Schomerus, Volker. Space-
time Energy Decreases under World-sheet RG Flow. arXiv:hep-th/0211063. 

[273] Haagensen, Peter E., Duality Transformations Away From Conformal Points. 

Phys.Lett. B 382 (1996), 356-362. 

[274] Hamilton, Richard S. Harmonic maps of manifolds with boundary. Lecture Notes in 

Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. 

[275] Hamilton, Richard S. Three-manifolds with positive Ricci curvature. J. Differential 

Geom. 17 (1982), no. 2, 255-306. 

[276] Hamilton, Richard S. The Ricci curvature equation. Seminar on nonlinear partial 
differential equations (Berkeley, Calif., 1983), 47-72, Math. Sci. Res. Inst. Publ., 2, 

Springer, New York, 1984. 

[277] Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential 
Geom. 24 (1986), no. 2, 153-179. 

[278] Hamilton, Richard S. The Ricci flow on surfaces. Mathematics and general rela
tivity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc, 
Providence, RI, 1988. 

[279] Hamilton, Richard S. The Hamack estimate for the Ricci flow. J. Differential 
Geom. 37 (1993), no. 1, 225-243. 

[280] Hamilton, Richard S. Eternal solutions to the Ricci flow. J. Diff. Geom. 38 (1993), 
1-11. 

[281] Hamilton, Richard S. A matrix Hamack estimate for the heat equation. Comm. Anal. 
Geom. 1 (1993), no. 1, 113-126. 

[282] Hamilton, Richard S. Monotonicity formulas for parabolic flows on manifolds. 
Comm. Anal. Geom. 1 (1993), no. 1, 127-137. 

[283] Hamilton, Richard S. Remarks on the entropy and Hamack estimates for the Gauss 
curvature flow. Comm. Anal. Geom. 2 (1994), no. 1, 155-165. 

[284] Hamilton, Richard S. Worn stones with flat sides. A tribute to Ilya Bakelman (Col
lege Station, TX, 1993), 69-78, Discourses Math. Appl., 3, Texas A & M Univ., 
College Station, TX, 1994. 

[285] Hamilton, Richard S. Convex hypersurfaces with pinched second fundamental form. 
Comm. Anal. Geom. 2 (1994), no. 1, 167-172. 



Bibliography 587 

[286; 

[287] 

[288] 

[289 

[290 

[291 

[292 

[293 

[294 

[295; 

[296 

[297j 

[298; 

[299 

[300; 

[301 

[302 

[303 

[304 

[305 

Hamilton, Richard S. An isoperimetric estimate for the Ricci flow on the two-
sphere. Modern methods in complex analysis (Princeton, NJ, 1992), 191-200, Ann. of 
Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995. 

Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in 
differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Internat. Press, Cam
bridge, MA, 1995. 

Hamilton, Richard S. A compactness property for solutions of the Ricci flow. 
Amer. J. Math. 117 (1995), no. 3, 545-572. 

Hamilton, Richard S. Harnack estimate for the mean curvature flow. J. Differential 
Geom. 41 (1995), no. 1, 215-226. 

Hamilton, Richard S. Four-manifolds with positive isotropic curvature. Comm. 
Anal. Geom. 5 (1997), no. 1, 1-92. 

Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds. 
Comm. Anal. Geom. 7 (1999), no. 4, 695-729. 

Hamilton, Richard S. Three-orbifolds with positive Ricci curvature. In Collected Pa
pers on Ricci Flow, eds. H.-D. Cao, B. Chow, S.-C. Chu, and S.-T. Yau, Internat. 
Press, Somerville, MA, 2003. 

Hamilton, Richard S. Differential Harnack estimates for parabolic equations. 
Preprint. 

Hamilton, Richard; Isenberg, James. Quasi-convergence of Ricci flow for a class of 
metrics. Comm. Anal. Geom. 1 (1993), no. 3-4, 543-559. 

Hamilton, Richard S.; Yau, Shing-Tung. The Harnack estimate for the Ricci flow on 
a surface—revisited. Asian J. Math. 1 (1997), no. 3, 418-421. 

Han, Qing; Hong, Jia-Xing; Lin, Chang-Shou. Local isometric embedding of surfaces 
with nonpositive Gaussian curvature. J. Differential Geom. 63 (2003), no. 3, 475-
520. 

Hardt, Robert H. Singularities of harmonic maps. Bull. Amer. Math. Soc. 34 (1997), 
15-34. 

Hartman Philip. Ordinary differential equations. Corrected reprint of the second 
(1982) edition. Birkhauser, Boston, MA. 

Hatcher, Allen. Basic Topology of 3-Manifolds. 
http://www.math.cornell.edu/~hatcher/. 

Hazel, Graham P. Triangulating Teichmuller space using the Ricci flow. Thesis, UC-
San Diego, 2004. 

Hebey, Emmanuel. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. 
Second edition. American Mathematical Society, AMS/CIMS Lecture Notes, Volume 
5, 2000. 

Hempel, John. 3-Manifolds. Ann. of Math. Studies, No. 86, Princeton University 
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. 

Hersch, Joseph. Sur la frequence fondamentale d'une membrane vibrante: evalu
ations par defaut et principe de maximum. (French) Z. Angew. Math. Phys. 11 
(1960), 387-413. 

Hicks, Noel J. Notes on differential geometry. Van Nostrand Mathematical Studies, 
No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. 

Hong, Min-Chun; Tian, Gang. Global existence of the m-equivariant Yang-Mills flow 
in four dimensional spaces. Comm. Anal. Geom. 12 (2004), no. 1-2, 183-211. 



588 Bibliography 

[306] Hong, Min-Chun; Tian, Gang. Asymptotical behaviour of the Yang-Mills flow and 
singular Yang-Mills connections. Math. Ann. 330 (2004), no. 3, 441-472. 

[307] Hormander, Lars. Riemannian geometry. Lectures fall of 1990, unpublished. 

[308] Hsu, Shu-Yu. Large time behaviour of solutions of the Ricci flow equation on R2. 
Pacific J. Math. 197 (2001), no. 1, 25-41. 

[309] Hsu, Shu-Yu. Global existence and uniqueness of solutions of the Ricci flow equation. 
Differential Integral Equations 14 (2001), no. 3, 305-320. 

[310] Huber, Alfred. On subharmonic functions and differential geometry in the large. 
Comment. Math. Helv. 32 (1957), 13-72. 

[311] Huisken, Gerhard. Flow by mean curvature of convex surfaces into spheres. J. Dif
ferential Geom. 20 (1984), no. 1, 237-266. 

[312] Huisken, Gerhard. Ricci deformation of the metric on a Riemannian manifold. 
J. Differential Geom. 21 (1985), no. 1, 47-62. 

[313] Huisken, Gerhard. Asymptotic behavior for singularities of the mean curvature flow. 
J. Differential Geom. 31 (1990), no. 1, 285-299. 

[314] Huisken, Gerhard; Ilmanen, Tom. The inverse mean curvature flow and the Rie
mannian Penrose inequality. J. Differential Geom. 59 (2001), no. 3, 353-437. 

[315] Huisken, Gerhard; Sinestrari, Carlo. Convexity estimates for mean curvature flow 
and singularities of mean convex surfaces. Acta Math. 183 (1999), no. 1, 45-70. 

[316] Huisken, Gerhard; Sinestrari, Carlo. Mean curvature flow singularities for mean 
convex surfaces. Calc. Var. Partial Differential Equations 8 (1999), no. 1, 1-14. 

[317] Ilmanen, Tom. Elliptic regularization and partial regularity for motion by mean cur
vature. Mem. Amer. Math. Soc. 108 (1994), no. 520. 

[318] Ilmanen, Tom. Lectures on Mean Curvature Flow and Related Equations. 
http://www.math.ethz.ch/~ilmanen/papers/notes.ps. 

[319] Ilmanen, Tom; Knopf, Dan. A lower bound for the diameter of solutions to the Ricci 
flow with nonzero Hl{M;R). Math. Res. Lett. 10 (2003), 161-168. 

[320] Isenberg, James; Jackson, Martin. Ricci flow of locally homogeneous geometries on 
closed manifolds. J. Differential Geom. 35 (1992), no. 3, 723-741. 

[321] Isenberg, James; Jackson, Martin; Lu, Peng. Ricci flow on locally homogeneous 
closed ^-manifolds. arXiv:math.DG/0502170. 

[322] Ivey, Tom. On solitons for the Ricci Flow. PhD thesis, Duke University, 1992. 

[323] Ivey, Tom. Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3 (1993), 
301-307. 

[324] Ivey, Tom. New examples of complete Ricci solitons. Proc. Amer. Math. Soc. 122 
(1994), 241-245. 

[325] Ivey, Tom. The Ricci Flow on Radially Symmetric R?. Comm. Part. Diff. Eq. 19 
(1994), 1481-1500. 

[326] Ivey, Tom. Local existence of Ricci solitons. Manuscripta Math. 91 (1996), 151-162. 

[327] Jaco, William. Lectures on three-manifold topology. CBMS Regional Conference Se
ries in Mathematics, 43, American Mathematical Society, Providence, R.L, 1980. 

[328] John, Fritz. Partial differential equations. Reprint of the fourth edition. Applied 
Mathematical Sciences, 1, Springer-Verlag, New York, 1991. 

[329] Jost, Jiirgen. Riemannian geometry and geometric analysis. Third edition. Univer-
sitext, Springer-Verlag, Berlin, 2002. 



Bibliography 589 

Kapovich, Michael. Hyperbolic manifolds and discrete groups. Progress in Mathe
matics, 183, Birkhauser Boston, Inc., Boston, MA, 2001. 

Karcher, Hermann. Riemannian comparison constructions. Global differential ge
ometry, 170-222, MAA Stud. Math., 27, Math. Assoc. America, Washington, DC, 
1989. 

Karp, Leon; Li, Peter. Unpublished. 

Kasue, Atsushi; Sugahara, Kunio. Gap theorems for certain submanifolds of Eu
clidean spaces and hyperbolic space forms. Osaka J. Math. 24 (1987), no. 4, 679-704. 

Kazdan, Jerry L. Another proof of Bianchi's identity in Riemannian geometry. 
Proc. Amer. Math. Soc. 81 (1981), no. 2, 341-342. 

Kazdan, Jerry L. Lecture Notes on Applications of Partial Differential Equations to 
Some Problems in Differential Geometry, http://www.math.upenn.edu/~kazdan/. 

Kazdan, Jerry L.; Warner, Prank W. Curvature functions for compact 2-manifolds. 
Ann. of Math. (2) 99 (1974), 14-47. 

Kim, Seick. Hamack inequality for nondivergent elliptic operators on Riemannian 
manifolds. Pacific J. Math. 213 (2004), no. 2, 281-293. 

King, J. R. Exact similarity solutions to some nonlinear diffusion equations. J. Phys. 
A 23 (1990), no. 16, 3681-3697. 

King, J. R. Exact multidimensional solutions to some nonlinear diffusion equations. 
Quart. J. Mech. Appl. Math. 46 (1993), no. 3, 419-436. 

King, J. R. Self-similar behavior for the equation of fast nonlinear diffusion. Phil. 
Trans. Roy. Soc, London, A 343 (1993), 337-375. 

Kleiner, Bruce. An isoperimetric comparison theorem. Invent. Math. 108 (1992), no. 
1, 37-47. 

Kleiner, Bruce; Lott, John. Notes on Perelman's papers. arXiv:math.DG/0605667. 

Klingenberg, Wilhelm. Contributions to Riemannian geometry in the large. Annals 
of Math. 69 (1959), 654-666. 

Klingenberg, Wilhelm. Uber Riemannsche Mannigfaltigkeiten mit positiver 
Kriimmung. Comment. Math. Helv. 35 (1961), 47-54. 

Knopf, Dan. Quasi-convergence of the Ricci flow. Thesis, University of Wisconsin-
Milwaukee, 1999. 

Knopf, Dan. Quasi-convergence of the Ricci flow. Comm. Anal. Geom. 8 (2000), no. 
2, 375-391. 

Knopf, Dan. Singularity models for the Ricci flow: an introductory survey. Varia
tional problems in Riemannian geometry, 67-80, Progr. Nonlinear Differential Equa
tions Appl., 59, Birkhauser, Basel, 2004. 

Knopf, Dan. An introduction to the Ricci flow neckpinch. In Geometric Evolution 
Equations, Contemporary Mathematics, eds. S.-C. Chang, B. Chow, S.-C. Chu, C -
S. Lin, American Mathematical Society, 2005. 

Knopf, Dan. Positivity of Ricci curvature under the Kahler-Ricci flow. arXiv:math. 
DG/0501108, Commun. Contemp. Math., to appear. 

Knopf, Dan; McLeod, Kevin. Quasi-convergence of model geometries under the Ricci 
flow. Comm. Anal. Geom. 9 (2001), no. 4, 879-919. 

Kobayashi, Ryoichi. Moduli of Einstein metrics on a K3 surface and degeneration 
of type I. Kahler metric and moduli spaces, 257-311, Adv. Stud. Pure Math., 18-11, 
Academic Press, Boston, MA, 1990. 



590 Bibliography 

[352] Kobayashi, Ryoichi; Todorov, Andrey N. Polarized period map for generalized K3 
surfaces and the moduli of Einstein metrics. Tohoku Math. J. (2) 39 (1987), no. 3, 
341-363. 

[353] Kobayashi, Shoshichi; Nomizu, Katsumi. Foundations of differential geometry. Vols. 
I and II. Reprint of the 1963 and 1969 originals, Wiley Classics Library. A Wiley-
Interscience Publication, John Wiley & Sons, Inc., New York, 1996. 

[354] Kobayashi, Shoshichi; Ochiai, Takushiro. Three-dimensional compact Kdhler muni-
folds with positive holomorphic bisectional curvature. J. Math. Soc. Japan 24 (1972), 
465-480. 

[355] Koiso, Norihito. On rotationally symmetric Hamilton's equation for Kdhler-
Einstein metrics. Recent topics in differential and analytic geometry, 327-337, 
Adv. Stud. Pure Math., 18-1, Academic Press, Boston, MA, 1990. 

[356] Kronheimer, P. B. The construction of ALE spaces as hyper-Kahler quotients. J. 
Differential Geom. 29 (1989), no. 3, 665-683. 

[357] Kronheimer, P. B. A Torelli-type theorem for gravitational instantons. J. Differential 
Geom. 29 (1989), no. 3, 685-697. 

[358] Krylov, N. V. Lectures on elliptic and parabolic equations in Holder spaces. Graduate 
Studies in Mathematics, 12, American Mathematical Society, Providence, RI, 1996. 

[359] Krylov, N. V.; Safonov, M. V. A property of the solutions of parabolic equations with 
measurable coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 
1, 161-175, 239; English transl. in Math. USSR-Izv. 16 (1981), 155-164. 

[360] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N. Linear and quasilinear 
equations of parabolic type. (Russian) Translated from the Russian by S. Smith. 
Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, 
Providence, R.I., 1967. 

[361] Landis, E. M. Second order equations of elliptic and parabolic type. Translated from 
the 1971 Russian original by Tamara Rozhkovskaya. Translations of Mathematical 
Monographs, 171, American Mathematical Society, Providence, RI, 1998. 

[362] Lauret, Jorge. Ricci soliton homogeneous nilmanifolds. Math. Ann. 319 (2001), no. 
4, 715-733. 

[363] Lee, John M. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts 
in Mathematics, 176, Springer-Verlag, 1997. 

[364] Lee, John M.; Parker, Thomas H. The Yamabe problem. Bull. Amer. Math. Soc. 
(N.S.) 17 (1987), no. 1, 37-91. 

[365] Leviton, P. R. A.; Rubinstein, J. Hyam. Deforming Riemannian metrics on the 
2-sphere, Centre for Math Analysis 10 (1985); Deforming Riemannian metrics on 
complex projective spaces. Centre for Math Analysis 12 (1987), 86-95. 

[366] Li, Peter. On the Sobolev constant and the p-spectrum of a compact Riemannian 
manifold. Ann. Sc. Ec. Norm. Sup. 4e serie, t. 13 (1980), 451-469. 

[367] Li, Peter. Lecture notes on geometric analysis, RIMGARC Lecture Notes Series 6, 
Seoul National University, 1993, http://math.uci.edu/~pli/lecture.pdf. 

[368] Li, Peter. Large time behavior of the heat equation on complete manifolds with non-
negative Ricci curvature. Ann. of Math. (2) 124 (1986), no. 1, 1-21. 

[369] Li, Peter. Harmonic sections of polynomial growth. Math. Res. Lett. 4(1997), no. 1, 
35-44. 

[370] Li, Peter; Tarn, Luen-Fai. Symmetric Green's functions on complete manifolds. 
Amer. J. Math. 109 (1987), no. 6, 1129-1154. 



Bibliography 591 

[371 

[372; 

[373; 

[374 

[375; 

[376 

[377] 

[378 

[379; 

[380] 

[381 

[382] 

[383' 

[384 

[385] 

[386" 

[387 

[388 

[389 

[390; 

[391 

[392 

Li, Peter; Tarn, Luen-Fai; Wang, Jiaping. Sharp bounds for the Green's function and 
the heat kernel Math. Res. Lett. 4 (1997), no. 4, 589-602. 

Li, Peter; Wang, Jiaping. Comparison theorem for Kdhler manifolds and positivity 
of spectrum. J. Diff. Geom., to appear. 

Li, Peter; Yau, Shing-Tung. Estimates of eigenvalues of a compact Riemannian 
manifold. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. 
Hawaii, Honolulu, Hawaii, 1979), pp. 205-239, Proc. Sympos. Pure Math., XXXVI, 
Amer. Math. Soc, Providence, R.I., 1980. 

Li, Peter; Yau, Shing Tung. A new conformal invariant and its applications to the 
Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69 
(1982), no. 2, 269-291. 

Li, Peter; Yau, Shing-Tung. On the parabolic kernel of the Schrodinger operator. 
Acta Math. 156 (1986), no. 3-4, 153-201. 

Lichnerowicz, Andre. Geometrie des groupes de transformations. (French) Travaux 
et Recherches Mathematiques, III, Dunod, Paris, 1958. 

Lichnerowicz, Andre. Propagateurs et commutateurs en relativite generale. (French) 
Inst. Hautes Etudes Sci. Publ. Math., No. 10, 1961. 

Lieberman, Gary M. Second order parabolic differential equations. World Scientific 
Publishing Co., River Edge, NJ, 1996. 

Lin, Fang-Hua. Gradient estimates and blow-up analysis for stationary harmonic 
maps. Annals of Math. 149 (1999), 785-829. 

Lohkamp, Joachim. Metrics of negative Ricci curvature. Ann. of Math. (2) 140 
(1994), no. 3, 655-683. 

Lohkamp, Joachim. Global and local curvatures. Riemannian geometry (Waterloo, 
ON, 1993), 23-51, Fields Inst. Monogr., 4, Amer. Math. Soc, Providence, RI, 1996. 

Lott, John. Some geometric properties of the Bakry-Emery-Ricci tensor. Comment. 
Math. Helv. 78 (2003), no. 4, 865-883. 

Lott, John. Remark about scalar curvature and Riemannian submersions. Preprint, 
http://www.math.lsa.umich.edu/~lott/. 

Lott, John. On the long-time behavior of type-HI Ricci flow solutions. arXiv:math. 
DG/0509639. 

Lott, John; Villani, Cedric. Ricci curvature for metric-measure spaces via optimal 

transport. arXiv:math.DG/0412127. 
Lu, Peng. Unpublished. 

Lu, Peng. A compactness property for solutions of the Ricci flow on orbifolds. Amer. 
J. Math. 123 (2001), no. 6, 1103-1134. 

Lu, Peng; Tian, Gang. The uniqueness of standard solutions in the work of Perelman. 
Preprint, April 2005. 

Luo, Feng. Combinatorial Yamabe Flow on Surfaces. Commun. Contemp. Math. 6 
(2004), no. 5, 765-780, arXiv:math.GT/0306167. 

Luo, Feng. A combinatorial curvature flow for compact 3-manifolds with boundary. 
arXiv:math.GT/0405295. 

Luo, Feng. A Characterization of Spherical Cone Metrics on Surfaces. arXiv.math. 
GT/0408112. 

Ma, Li; Chen, Dezhong. Examples for Cross Curvature Flow on 3-Manifolds. 
arXiv:math.DG/0405275. 



592 Bibliography 

Mabuchi, Toshiki. C -actions and algebraic threefolds with ample tangent bundle. 
Nagoya Math. J. 69 (1978), 33-64. 

Manning, Anthony. The volume entropy of a surface decreases along the Ricci flow. 
Ergodic Theory Dynam. Systems 24 (2004), no. 1, 171-176. 

Margerin, Christophe. Un theoreme optimal pour le pincement faible en di
mension 4. (French) [An optimal theorem for a weakly pinched 4-manifold], 
C. R. Acad. Sci. Paris Ser. I Math. 303 (1986), no. 17, 877-880. 

Margerin, Christophe. Pointwise pinched manifolds are space forms. Geometric mea
sure theory and the calculus of variations (Areata, Calif., 1984), 307-328, Proc. Sym-
pos. Pure Math., 44, Amer. Math. Soc, Providence, RI, 1986. 

Margerin, Christophe. A Sharp Characterization of the Smooth A-Sphere in Curva
ture Terms. Comm. Anal. Geom. 6 (1998), 21-65. 

Matsushima, Yozo. Remarks on Kahler-Einstein manifolds. Nagoya Math. J. 46 
(1972), 161-173. 

Maz'ja, V. G. Classes of domains and imbedding theorems for function spaces. Dokl. 
Akad. Nauk SSSR 133 (1960), 527-530 (Russian); translated as Soviet Math. Dokl. 
1 (1960), 882-885. 

McLaughlin, D.W.; Papanicolaou, G.C.; Sulem, C ; Sulem, P.L. Focusing singularity 
of the cubic Schrodinger equation. Phys. Rev. A, 34(2) (1986), 1200-1210. 

Meeks, William, III; Simon, Leon; Yau, Shing-Tung. Embedded minimal surfaces, 
exotic spheres, and manifolds with positive Ricci curvature. Ann. of Math. (2) 116 
(1982), no. 3, 621-659. 

Meeks, William H., Ill; Yau, Shing Tung. Topology of three-dimensional manifolds 
and the embedding problems in minimal surface theory. Ann. of Math. (2) 112 (1980), 
no. 3, 441-484. 

Meeks, William W., Ill; Yau, Shing Tung. The existence of embedded minimal sur
faces and the problem of uniqueness. Math. Z. 179 (1982), no. 2, 151-168. 

Merle, Frank; Raphael, Pierre. On universality of blow-up profile for L2 critical 
nonlinear Schrodinger equation. Invent. Math. 156 (2004), no. 3, 565-672. 

Merle, Frank; Zaag, Hatem. Refined uniform estimates at blow-up and applications 
for nonlinear heat equations. Geom. Funct. Anal. 8 (1998), no. 6, 1043-1085. 

Merle, Frank; Zaag, Hatem. Optimal estimates for blowup rate and behavior for 
nonlinear heat equations. Comm. Pure Appl. Math. 51 (1998), no. 2, 139-196. 

Meyer, Daniel. Sur les varietes riemanniennes a operateur de courbure positif 
(French) C. R. Acad. Sci. Paris Ser. A-B 272 (1971), A482-A485. 

Micallef, Mario J.; Moore, John Douglas. Minimal two-spheres and the topology of 
manifolds with positive curvature on totally isotropic two-planes. Ann. of Math. (2) 
127 (1988), no. 1, 199-227. 

Michael, J. H.; Simon, Leon M. Sobolev and mean-value inequalities on generalized 
submanifolds of Rn. Comm. Pure Appl. Math. 26 (1973), 361-379. 

Milka, A. D. Metric structure of a certain class of spaces that contain straight lines. 
(Russian) Ukrain. Geometr. Sb. Vyp. 4 (1967), 43-48. 

Milnor, John W. Morse theory. Based on lecture notes by M. Spivak and R. Wells. 
Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 
1963. 

Milnor, John. Curvatures of left invariant metrics on Lie groups. Advances in Math. 
21 (1976), no. 3, 293-329. 



Bibliography 593 

[413 

[414 

[415 

[416 

[4ir 

[418 

[419; 

[420' 

[421 

[422; 

[423; 

[424 

[425 

[426 

[427 

[428; 

[429 

[430 

[431 

[432 

[433; 

[434; 

Milnor, John. Towards the Poincare conjecture and the classification of 3-manifolds. 
Notices Amer. Math. Soc. 50 (2003), no. 10, 1226-1233. 

Min-Oo, Maung. Almost Einstein manifolds of negative Ricci curvature. J. Differen
tial Geom. 32 (1990), 457-472. 

Mok, Ngaiming. The uniformization theorem for compact Kahler manifolds of non-
negative holomorphic bisectional curvature. J. Differential Geom. 27 (1988), no. 2, 
179-214. 

Mok, Ngaiming; Zhong, Jia Qing. Curvature characterization of compact Hermitian 
symmetric spaces. J. Differential Geom. 23 (1986), no. 1, 15-67. 

Morgan, Prank. Geometric measure theory. A beginner's guide. Third edition. Aca
demic Press, Inc., San Diego, CA, 2000. 

Morgan, John. W. Recent progress on the Poincare conjecture and the classification 
of 3-manifolds. Bull. Amer. Math. Soc. 42 (2005), 57-78. 
Morgan, John. W. Existence of Ricci flow with surgery. Preprint. 

Morgan, John W.; Bass, H. (eds.) The Smith conjecture. Papers Presented at the 
Symposium Held at Columbia University, New York, 1979. Pure Appl. Math., 112, 
Academic Press, Orlando, FL, 1984. 

Morgan, John W.; Tian, Gang. Ricci Flow and the Poincare Conjecture. arXiv:math. 
DG/0607607. 

Mori, Shigefumi. Projective manifolds with ample tangent bundles. Ann. of Math. 
(2) 110 (1979), no. 3, 593-606. 

Morrow, James; Kodaira, Kunihiko. Complex manifolds. Holt, Rinehart and Win
ston, Inc., New York-Montreal, Quebec-London, 1971. 

Moser, Jiirgen. A Harnack inequality for parabolic differential equations. Comm. 
Pure Appl. Math. 17 (1964), 101-134; Correction to "A Harnack inequality for 
parabolic differential equations". Comm. Pure Appl. Math. 20 (1967), 231-236. 

Moser, Jiirgen. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. 
J. 20 (1970/71), 1077-1092. 

Mostow, George. Quasi-conformal mappings in n-space and the rigidity of hyperbolic 
space forms. Publ. IHES 34 (1968), 53-104. 

Mullins, W. W. Two-dimensional motion of idealized grain boundaries. J. Appl. 
Phys. 27 (1956), 900-904. 

Nash, John. The imbedding problem for Riemannian manifolds. Ann. of Math. (2) 
63 (1956), 20-63. 

Nash, John. Continuity of solutions of parabolic and elliptic equations. Amer. J. 
Math. 80 (1958), 931-954. 

Ni, Lei, The entropy formula for linear heat equation. Journal of Geometric Analysis, 
14 (2004), 85-98; Addenda, 14 (2004), 369-374. 

Ni, Lei. A monotonicity formula on complete Kahler manifolds with nonnegative 
bisectional curvature. J. Amer. Math. Soc. 17 (2004), no. 4, 909-946. 

Ni, Lei. Monotonicity and Kahler-Ricci flow. In Geometric Evolution Equations, 
Contemporary Mathematics, Vol. 367, eds. S.-C. Chang, B. Chow, S.-C. Chu, C.-S. 
Lin, American Mathematical Society, 2005. 

Ni, Lei. Ricci flow and nonnegativity of curvature. Math. Res. Lett. 11 (2004), 883-
904, arXiv:math.DG/0305246. 

Ni, Lei. Ancient solution to Kahler-Ricci flow. Math. Res. Lett, 12 (2005), 633-654, 
arXiv:math.DG/0502494. 



594 Bibliography 

[435] Ni, Lei. A new matrix Li- Yau-Hamilton estimate for Kahler-Ricci flow. J. Diff. 
Geom., to appear, arXiv:math.DG/0502495. 

[436] Ni, Lei; Luen-Fai Tarn. Plurisubharmonic functions and the Kahler-Ricci flow. Amer. 
J. Math. 125 (2003), 623-645. 

[437] Ni, Lei; Luen-Fai Tarn. Plurisubharmonic functions and the structure of complete 
Kahler manifolds with nonnegative curvature. J. Differential Geom. 64 (2003), no. 
3, 457-524. 

[438] Ni, Lei; Luen-Fai Tarn. Kahler-Ricci flow and the Poincare-Lelong equation. Comm. 
Anal. Geom. 12 (2004), 111-141. 

[439] Ni, Lei; Luen-Fai Tarn. Liouville properties of plurisubharmonic functions. 
arXiv:math.DG/0212364. 

[440] Nirenberg, Louis. The Weyl and Minkowski problems in differential geometry in the 
large. Comm. Pure Appl. Math. 6 (1953), 337-394. 

[441] Nishikawa, Seiki. Deformation of Riemannian metrics and manifolds with bounded 
curvature ratios. Geometric measure theory and the calculus of variations (Areata, 
Calif., 1984), 343-352, Proc. Sympos. Pure Math., 44, Amer. Math. Soc, Provi
dence, RI, 1986. 

[442] Nishikawa, Seiki. On deformation of Riemannian metrics and manifolds with posi
tive curvature operator. Curvature and topology of Riemannian manifolds (Katata, 
1985), 202-211, Lecture Notes in Math., 1201, Springer, Berlin, 1986. 

[443] Obata, Morio. Certain conditions for a Riemannian manifold to be isometric with a 
sphere. J. Math. Soc. Japan 14 (1962), 333-340. 

[444] Olwell, Kevin D. A family of solitons for the Gauss curvature flow. Thesis, UC-San 
Diego, 1993. 

[445] O'Neill, Barrett. Semi-Riemannian geometry. With applications to relativity. Pure 
and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich, 
Publishers], New York, 1983. 

[446] Onofri, E. On the positivity of the effective action in a theory of random surfaces. 
Comm. Math. Phys. 86 (1982), no. 3, 321-326. 

[447] Osgood, Brad; Phillips, Ralph; Sarnak, Peter. Extremals of determinants of Lapla-
cians. J. Funct. Anal. 80 (1988), no. 1, 148-211. 

[448] Parker, Leonard; Christensen, Steven M. MathTensor. A system for doing tensor 
analysis by computer. Addison-Wesley, 1994. 

[449] Perelman, Grisha. Proof of the soul conjecture of Cheeger and Gromoll. J. Differential 
Geom. 40 (1994), no. 1, 209-212. 

[450] Perelman, Grisha. A complete Riemannian manifold of positive Ricci curvature with 
Euclidean volume growth and nonunique asymptotic cone. Comparison geometry 
(Berkeley, CA, 1993-94), 165-166, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. 
Press, Cambridge, 1997. 

[451] Perelman, Grisha. A. D. Aleksandrov spaces with curvatures bounded from below, II. 
Preprint. 

[452] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric appli
cations. arXiv:math.DG/0211159. 

[453] Perelman, Grisha. Ricci flow with surgery on three-manifolds. arXiv:math.DG/ 
0303109. 

[454] Perelman, Grisha. Finite extinction time for the solutions to the Ricci flow on certain 
three-manifolds. arXiv:math.DG/0307245. 



Bibliography 595 

[455] Perelman, Grisha. Informal announcement about results on the Kahler-Ricci flow 
(2003). 

[456] Peters, Stefan. Convergence of Riemannian manifolds. Compositio Math. 62 (1987), 
no. 1, 3-16. 

[457] Petersen, Peter. Convergence theorems in Riemannian geometry. Comparison geom
etry (Berkeley, CA, 1993-94), 167-202, Math. Sci. Res. Inst. Publ., 30, Cambridge 
Univ. Press, Cambridge, 1997. 

[458] Petersen, Peter. Riemannian geometry. Graduate Texts in Mathematics, 171, 
Springer-Verlag, New York, 1998. 

[459] Petrunin, Anton; Tuschmann, Wilderich. Asymptotical flatness and cone structure 
at infinity. Math. Ann. 321 (2001), no. 4, 775-788. 

[460] Phong, D.H.; Sturm, Jacob. On the Kahler-Ricci flow on complex surfaces. 
arXiv:math.DG/0407232. 

[461] Phong, D.H.; Sturm, Jacob. On stability and the convergence of the Kahler-Ricci 
flow. arXiv:math.DG/0412185. 

[462] Pogorelov, A. V. Izgibanie vypuklyh poverhnosteui. (Russian) [Deformation of convex 
surfaces]. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951; Extrinsic 
geometry of convex surfaces. Translated from the Russian by Israel Program for Sci
entific Translations. Translations of Mathematical Monographs, Vol. 35, American 
Mathematical Society, Providence, R.I., 1973. 

[463] Polyakov, A. Quantum geometry of Fermionic strings. Phys. Lett. B 103 (1981), 

211-213. 

[464] Poor, Walter A., Jr. Some results on nonnegatively curved manifolds. J. Differential 
Geometry 9 (1974), 583-600. 

[465] Prasad, Gopal. Strong rigidity of Q-rank 1 lattices. Invent. Math. 21 (1973), 255-
286. 

[466] Protter, Murray H.; Weinberger, Hans F. Maximum principles in differential equa
tions. Corrected reprint of the 1967 original. Springer-Verlag, New York, 1984. 

[467] Rade, Johan. On the Yang-Mills heat equation in two and three dimensions. J. Reine 
Angew. Math. 431 (1992), 123-163. 

[468] Rauch, H. E. A contribution to differential geometry in the large. Ann. of Math. 54 
(1951) 38-55. 

[469] Ray, D. B.; Singer, Isadore M. R-torsion and the Laplacian on Riemannian mani
folds. Advances in Math. 7 (1971), 145-210. 

[470] Reilly, Robert C. Applications of the Hessian operator in a Riemannian manifold. 
Indiana Univ. Math. J. 26 (1977), 459-472. 

[471] Rosenau, Philip. On fast and super-fast diffusion. Phys. Rev. Lett. 74 (1995), 1056-
1059. 

[472] Rothaus, O. S. Logarithmic Sobolev inequalities and the spectrum of Schrodinger 
operators. J. Punct. Anal. 42 (1981), 110-120. 

[473] Rubinstein; J. Hyam; Sinclair, Robert. Visualizing Ricci flow of manifolds of revo
lution. arXiv:math.DG/0406189. 

[474] Sacks, J.; Uhlenbeck, K. The existence of minimal immersions of 2-spheres. Ann. of 
Math. (2) 113 (1981), no. 1, 1-24. 

[475] Sakai, Takashi. Riemannian geometry. Translated from the 1992 Japanese original 
by the author. Translations of Mathematical Monographs, 149, American Mathe
matical Society, Providence, RI, 1996. 



596 Bibliography 

[476] Saloff-Coste, Laurent. Aspects of Sobolev Type Inequalities. London Mathematical 
Society Lecture Notes Series 289, Cambridge University Press, 2002. 

[477] Samarskii, Alexander A.; Galaktionov, Victor A.; Kurdyumov, Sergei P.; Mikhailov, 
Alexander P. Blow-up in quasilinear parabolic equations. Translated from the 1987 
Russian original by Michael Grinfeld and revised by the authors. De Gruyter Expo
sitions in Mathematics, 19, Walter de Gruyter & Co., Berlin, 1995. 

[478] Schoen, Richard M. Conformal deformation of a Riemannian metric to constant 
scalar curvature. J. Differential Geom. 20 (1984), no. 2, 479-495. 

[479] Schoen, Richard M. A report on some recent progress on nonlinear problems in 
geometry, Surveys in differential geometry, Vol. I (Cambridge, MA, 1990), 201-241, 
Lehigh Univ., Bethlehem, PA, 1991. 

[480] Schoen, Richard M. On the number of constant scalar curvature metrics in a con
formal class. Differential geometry, 311-320, Pitman Monogr. Surveys Pure Appl. 
Math., 52, Longman Sci. Tech., Harlow, 1991. 

[481] Schoen, Richard M. The effect of curvature on the behavior of harmonic functions 
and mappings. Nonlinear partial differential equations in differential geometry (Park 
City, UT, 1992), 127-184, IAS/Park City Math. Ser., 2, Amer. Math. Soc, Provi
dence, RI, 1996. 

[482] Schoen, R.; Yau, Shing-Tung. Existence of incompressible minimal surfaces and the 
topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. of 
Math. (2) 110 (1979), no. 1, 127-142. 

[483] Schoen, Richard; Yau, Shing-Tung. Complete three-dimensional manifolds with pos
itive Ricci curvature and scalar curvature. Seminar on Differential Geometry, pp. 
209-228, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982. 

[484] Schoen, R.; Yau, Shing-Tung. Conformally flat manifolds, Kleinian groups and 
scalar curvature. Invent. Math. 92 (1988), no. 1, 47-71. 

[485] Schoen, Richard; Yau, Shing-Tung. Lectures on differential geometry. Conference 
Proceedings and Lecture Notes in Geometry and Topology, I, International Press, 
Cambridge, MA, 1994. 

[486] Schoen, Richard; Yau, Shing-Tung. Lectures on harmonic maps. Conference Pro
ceedings and Lecture Notes in Geometry and Topology, II, International Press, 
Cambridge, MA, 1997. 

[487] Schwetlick, Hartmut; Struwe, Michael. Convergence of the Yamabe flow for "large" 
energies. J. Reine Angew. Math. 562 (2003), 59-100. 

[488] Scott, Peter. The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 
no. 5, 401-487. 

[489] Scott, Peter; Wall, C. T. C. Topological methods in group theory. In Homological 
Group Theory, LMS Lecture Note Series 36, Cambridge Univ. Press (1979), 137-203. 

[490] Sesum, Natasa. Convergence of Kahler-Einstein orbifolds. J. Geom. Anal. 14 (2004), 
no. 1, 171-184. 

[491] Sesum, Natasa. Curvature tensor under the Ricci flow. arXiv:math.DG/0311397. 

[492] Sesum, Natasa. Limiting behaviour of the Ricci flow. arXiv:math.DG/0402194. 

[493] Sesum, Natasa. Convergence of the Ricci flow toward a unique soliton. arXiv:math. 
DG/0405398. 

[494] Sesum, Natasa. Linear and dynamical stability of Ricci flat metrics. arXiv:math. 
DG/0410062. 



Bibliography 597 

[495 

[496 

[497 

[498; 

[499 

[500; 

[501 

[502 

[503; 

[504; 

[505 

[506 

[507 

[508 

[509 

[510; 

[511 

[512 

[513; 

[514; 

[515 

[5i6; 

Sesum, Natasa; Tian, Gang; Wang, Xiaodong. Notes on Perelman's paper on the 
entropy formula for the Ricci flow and its geometric applications. June 23, 2003. 
Sharafutdinov, V. A. The Pogorelov-Klingenberg theorem for manifolds that are 
homeomorphic to Rn. (Russian) Sibirsk. Mat. Z. 18 (1977), no. 4, 915-925, 958. 

Sharafutdinov, V. A. Convex sets in a manifold of nonnegative curvature. (Russian) 
Mat. Zametki 26 (1979), no. 1, 129-136, 159. 

Shen, Ying. On Ricci deformation of a Riemannian metric on manifold with bound
ary. Pacific J. Math. 173 (1996), 203-221. 

Sheng, Weimin; Trudinger, Neil S.; Wang, Xu-Jia. The Yamabe problem for higher 
order curvatures. arXiv:math.DG/0505463. 

Shi, Wan-Xiong. Complete noncompact three-manifolds with nonnegative Ricci cur
vature. J. Differential Geom. 29 (1989), 353-360. 

Shi, Wan-Xiong. Deforming the metric on complete Riemannian manifolds. J. Dif
ferential Geom. 30 (1989), no. 1, 223-301. 

Shi, Wan-Xiong. Ricci deformation of the metric on complete noncompact Riemann
ian manifolds. J. Differential Geom. 30 (1989), no. 2, 303-394. 

Shi, Wan-Xiong. Ricci flow and the uniformization on complete Kahler manifolds. 
J. Differential Geom. 45 (1997), 94-220. 

Shioya, T.; Yamaguchi, T. Volume collapsed three-manifolds with a lower curvature 
bound. arXiv:math/0304472. 

Simon, Leon. Lectures on Geometric Measure Theory. Proc. Centre Math. Anal. 
Austral. Nat. Univ. 3 (1983). 

Simon, Leon. Asymptotics for a class of nonlinear evolution equations, with appli
cations to geometric problems. Ann. of Math. (2) 118 (1983), no. 3, 525-571. 

Simon, Leon. Singularities of geometric variational problems. Nonlinear partial 
differential equations in differential geometry (Park City, UT, 1992), 187-223, 
IAS/Park City Math. Ser., 2, Amer. Math. Soc, Providence, RI, 1996. 

Simon, Leon. Schauder estimates by scaling. Calc. Var. Partial Differential Equations 
5 (1997), no. 5, 391-407. 

Simon, Miles. A class of Riemannian manifolds that pinch when evolved by Ricci 
flow. Manuscripta Math. 101 (2000), no. 1, 89-114. 

Simon, Miles. Deformation of C° Riemannian metrics in the direction of their Ricci 
curvature. Comm. Anal. Geom. 10 (2002), no. 5, 1033-1074. 

Simon, Miles. Deforming Lipschitz metrics into smooth metrics while keeping their 
curvature operator non-negative. In Geometric Evolution Equations, Contemporary 
Mathematics, eds. S.-C. Chang, B. Chow, S.-C. Chu, C.-S. Lin, American Mathe
matical Society, 2005. 

Simons, James. On transitivity of holonomy systems. Ann. Math. 76 (1962) 213-234. 
Simons, James. Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 
(1968), 62-105. 

Singer, Isadore M. Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 
13 (1960), 685-697. 

Singer, Isadore M.; Thorpe, J. A. Lecture notes on elementary topology and geometry. 
Reprint of the 1967 edition. Undergraduate Texts in Mathematics, Springer-Verlag, 
New York-Heidelberg, 1976. 

Siu, Yum Tong. Lectures on Hermitian-Einstein metrics for stable bundles and 
Kahler-Einstein metrics. DMV Seminar, 8, Birkhauser Verlag, Basel, 1987. 



598 Bibliography 

[517] Siu, Yum Tong; Yau, Shing-Tung. Compact Kdhler manifolds of positive bisectional 
curvature. Invent. Math. 59 (1980), no. 2, 189-204. 

[518] Smoller, Joel. Shock waves and reaction-diffusion equations. Second edition. 
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math
ematical Sciences], 258, Springer-Verlag, New York, 1994. 

[519] Spivak, Michael. A comprehensive introduction to differential geometry. Vols. I-V. 
Second edition. Publish or Perish, Inc., Wilmington, Del., 1979. 

[520] Stein, Elias. Singular Integrals and Differentiability Properties of Functions. Prince
ton Univ. Press, 1970. 

[521] Strominger, Andrew; Vafa, Cumrun. Microscopic origin of the Bekenstein-Hawking 
entropy. Phys. Lett. B 379 (1996), no. 1-4, 99-104. 

[522] Strominger, Andrew; Yau, Shing-Tung; Zaslow, Eric. Mirror symmetry is T-duality. 
Nuclear Phys. B 479 (1996), no. 1-2, 243-259. 

[523] Struwe, Michael. On the evolution of harmonic mappings of Riemannian surfaces. 
Comment. Math. Helv. 60 (1985), no. 4, 558-581. 

[524] Struwe, Michael. On the evolution of harmonic maps in higher dimensions. J. Dif
ferential Geom. 28 (1988), no. 3, 485-502. 

[525] Struwe, Michael. Variational methods. Applications to nonlinear partial differential 
equations and Hamiltonian systems. Third edition. Ergebnisse der Mathematik und 
ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics 34, Springer-Verlag, 
Berlin, 2000. 

[526] Szego, Gabor. Inequalities for certain eigenvalues of a membrane of given area. J. 
Rational Mech. Anal. 3 (1954), 343-356. 

[527] Tachibana, Shun-ichi. A theorem of Riemannian manifolds of positive curvature op
erator. Proc. Japan Acad. 50 (1974), 301-302. 

[528] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic 
geometry. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381. 

[529] Thurston, William P. Three-dimensional geometry and topology. Vol. 1. Edited by 
Silvio Levy. Princeton Mathematical Series, 35, Princeton University Press, Prince
ton, NJ, 1997. 

[530] Thurston, William P. The Geometry and Topology of Three-Manifolds. March 2002 
electronic version 1.1 of the 1980 lecture notes distributed by Princeton University. 
http://www.msri.org/publications/books/gt3m/. 

[531] Tian, Gang. Canonical metrics in Kdhler geometry. Notes taken by Meike Akveld. 
Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2000. 

[532] Tian, Gang; Zheng, Yu. On the study of one flow for ASD connection. Preprint. 

[533] Tian, Gang; Zhu, Xiaohua. Uniqueness of Kahler-Ricci solitons. Acta Math. 184 
(2000), no. 2, 271-305. 

[534] Toponogov, Victor A. Riemann spaces with curvature bounded below. (Russian) Us-
pehi Mat. Nauk 14 (1959), no. 1 (85), 87-130. 

[535] Topping, Peter. Diameter control under Ricci flow. Comm. Anal. Geom. 13 (2005), 
1039-1055. 

[536] Topping, Peter. Lectures on the Ricci flow. London Mathematical Society and Cam
bridge University Press, to appear, http://www.maths.warwick.ac.uk/~topping/ 
RFnotes.html. 

[537] Topping, Peter. Ricci flow compactness via pseudolocality, and flows with incomplete 
initial metrics. Preprint. 



Bibliography 599 

[538] 

[539; 

[540; 

[541 

[542; 

[543; 

[544; 

[545; 

[546; 

[547; 

[548; 

[549 

[550; 

[551 

[552; 

[553; 

[554; 

[555; 

[556; 

[557; 

Trudinger, Neil S. On imbeddings into Orlicz spaces and some applications. J. Math. 
Mech. 17 (1967), 473-483. 

Trudinger, Neil S. Remarks concerning the conformal deformation of Riemannian 
structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-
274. 

Tso, Raising. Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. 
Pure Appl. Math. 38 (1985), no. 6, 867-882. 

Uhlenbeck, K.; Yau, Shing-Tung. On the existence of Hermitian-Yang-Mills connec
tions in stable vector bundles. Frontiers of the mathematical sciences: 1985 (New 
York, 1985). Comm. Pure Appl. Math. 39 (1986), no. S, suppl, S257-S293. A note 
on our previous paper. Comm. Pure Appl. Math. 42 (1989), no. 5, 703-707. 

Varadhan. S.R. On the behavior of the fundamental solution of the heat equation 
with variable coefficients. Comm. Pure Appl. Math. 20 (1967), 431-455. 

Villani, Cedric. Topics in optimal transportation. Graduate Studies in Mathematics, 
58, American Mathematical Society, Providence, RI, 2003. 

Wachowski, Andy; Wachowski, Larry. The Matrix. Warner Bros. Studios and Village 
Roadshow Pictures, 1999. 

Waldhausen, Priedholm. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II. 
(German) (A class of 3-dimensional manifolds). Invent. Math. 3 (1967), 308-333; 
ibid. 4 (1967) 87-117. 

Wang, Lihe. A geometric approach to the Calderdn-Zygmund estimates. Preprint. 

Wang, Xujia. Convex solutions to the mean curvature flow. 
arXiv:math.DG/0404326. 

Warner, Frank W. Foundations of differentiate manifolds and Lie groups. Corrected 
reprint of the 1971 edition. Graduate Texts in Mathematics, 94, Springer-Verlag, 
New York-Berlin, 1983. 

Watson, N. A. A theory of subtemperatures in several variables. Proc. London Math. 
Soc. (3) 26 (1973), 385-417. 

Wei, Guofang. Curvature formulas in Section 6.1 of Perelman's paper (math.DG/ 
0211159). http://www.math.ucsb.edu/~wei/Perelman.html. 

Weinberger, Hans F. An isoperimetric inequality for the n-dimensional free mem
brane problem. J. Rational Mech. Anal. 5 (1956), 633-636. 

Weinkove, Ben. Singularity formation in the Yang-Mills flow. Calc. Var. Partial 
Differential Equations 19 (2004), no. 2, 211-220. 

Weil, Andre. Sur les surfaces a courbure negative. (On surfaces of negative curva
ture). C. R. Acad. Sci. Paris 182 (1926), 1069-1071. 

Weinkove, Ben. Convergence of the J-flow on Kahler surfaces. Comm. Anal. Geom. 
12 (2004), no. 4, 949-965. 

Weyl, Hermann. Das asymptotische Verteilungsgesetz der Eigenwerte linearer par-
tieller Differentialgleichungen. (German). (The asymptotic distribution law of the 
eigenvalues of linear partial differential equations). Math. Ann. 71 (1912), 441-479. 

Weyl, Hermann. Uber die Bestimmung einer geschlossenen konvexen Fldche durch 
ihr Linienelement. Vierteljahrsschrift der naturforschenden Gesellschaft, Zurich, 61 
40-72, reprinted in Selecta Hermann Weyl, Basel und Stuttgart, 1956, 148-178. 

White, Brian. The size of the singular set in mean curvature flow of mean-convex 
sets. J. Amer. Math. Soc. 13 (2000), no. 3, 665-695 (electronic). 



600 Bibliography 

[558] White, Brian. The nature of singularities in mean curvature flow of mean-convex 
sets. J. Amer. Math. Soc. 16 (2003), no. 1, 123-138. 

[559] Widder, David V. The heat equation. Pure and Applied Mathematics, Vol. 67, Aca
demic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. 

[560] Wilking, Burkhard. Torus actions on manifolds of positive sectional curvature. Acta 
Math. 191 (2003), no. 2, 259-297. 

[561] Witten, Edward. String theory and black holes. Phys. Rev. D (3) 44 (1991), no. 2, 
314-324. 

[562] Wolf, Joseph A. Spaces of constant curvature. Fifth edition. Publish or Perish, Inc., 
Houston, TX, 1984. 

[563] Wu, Hung-Hsi. The Bochner technique in differential geometry. Math. Rep. 3 (1988), 
no. 2, i-xii and 289-538. 

[564] Wu, Hung-Hsi; Chen, Weihuan. Selected Topics in Riemannian Geometry (Chinese). 
Peking University Press, 1993 

[565] Wu, Hung-Hsi; Shen, Chun-li; Yu, Yanlin. Introduction to Riemannian Geometry 
(Chinese). Peking University Press, 1989. 

[566] Wu, Lang-Fang. The Ricci flow on 2-orbifolds with positive curvature. J. Differential 
Geom. 33 (1991), no. 2, 575-596. 

[567] Wu, Lang-Fang. The Ricci flow on complete R2. Comm. Anal. Geom. 1 (1993), 
no. 3-4, 439-472 (with Appendix A. Ricci flow on hyperbolic surfaces, by Sigurd 
Angenent). 

[568] Wu, Lang-Fang. A new result for the porous medium equation derived from the Ricci 
flow. Bull. Amer. Math. Soc. 28 (1993), 90-94. 

[569] Xia, Dao-Xing. Measure and integration theory on infinite-dimensional spaces. Ab
stract harmonic analysis. Translated by Elmer J. Brody. Pure and Applied Mathe
matics, Vol. 48, Academic Press, New York-London, 1972. 

[570] Yamabe, Hidehiko. On a deformation of Riemannian structures on compact mani
folds. Osaka Math. J. 12 (1960), 21-37. 

[571] Yang, Deane. Convergence of Riemannian manifolds with integral bounds on curva
ture, I. Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 77-105. 

[572] Yang, Deane. Convergence of Riemannian manifolds with integral bounds on curva
ture, II. Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 179-199. 

[573] Yang, Paul C ; Yau, Shing Tung. Eigenvalues of the Laplacian of compact Riemann 
surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 7 
(1980), no. 1, 55-63. 

[574] Yau, Shing-Tung. Harmonic functions on complete Riemannian manifolds. Comm. 
Pure Appl. Math. 28 (1975), 201-228. 

[575] Yau, Shing-Tung. Isoperimetric constants and the first eigenvalue of a compact Rie
mannian manifold. Ann. Sci. Ecole Norm. Sup. (4) 8 (1975), no. 4, 487-507. 

[576] Yau, Shing-Tung. Calabi's conjecture and some new results in algebraic geometry. 
Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798-1799. 

[577] Yau, Shing-Tung. On the Ricci curvature of a compact Kahler manifold and the 
complex Monge-Ampere equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 
339-411. 

[578] Yau, Shing-Tung. On the Harnack inequalities of partial differential equations, 
Comm. Anal. Geom. 2 (1994), no. 3, 431-450. 



Bibliography 601 

Yau, Shing-Tung. Harnack inequality for non-self-adjoint evolution equations, Math. 
Res. Lett. 2 (1995), no. 4, 387-399. 

Ye, Rugang. Ricci flow, Einstein metrics and space forms. Trans. Amer. Math. Soc. 
338 (1993), no. 2, 871-896. 

Ye, Rugang. Global existence and convergence of Yamabe flow. J. Differential Geom. 
39 (1994), no. 1, 35-50. 

Ye, Rugang. Notes on the reduced volume and asymptotic Ricci solitons of re
solutions. Revised Feb. 14, 2004. http://www.math.ucsb.edu/^yer/ricciflow.htmL 

Ye, Rugang. Curvature Estimates for the Ricci Flow I, II. arXiv:math.DG/0509142, 
arXiv:math.DG/0509128. 

Zamolodchikov, A. Irreversibility of the flux of the renormalization group in 2D field 
theory. JETP Letters 43 (1986), 730-732. 

Zheng, Fangyang. Complex differential geometry. AMS/IP Studies in Advanced 
Mathematics, 18, American Mathematical Society, Providence, RI; International 
Press, Boston, MA, 2000. 

Zheng, Yu. The negative gradient flow for the L2-integral of Ricci curvature. 
Manuscripta Math. I l l (2003), 163-186. 

Zhong, Jia-Qing; Yang, Hong-Cang. On the estimate of the first eigenvalue of a 
compact Riemannian manifold. Sci. Sinica Ser. A 27 (1984), no. 12, 1265-1273. 

Zhu, Shunhui. The comparison geometry of Ricci curvature. In Comparison Geom
etry, eds. Grove and Petersen, MSRI Publ. 30 (1997), 221-262. 

Zhu, Xi-Ping. Lectures on mean curvature flows. AMS/IP Studies in Advanced 
Mathematics, 32, American Mathematical Society, Providence, RI; International 
Press, Somerville, MA, 2002. 

Zhu, Xi-Ping. Personal communication regarding application of Perelman's entropy 
to surfaces. 

Ziemer, William P. Weakly differentiate functions. Sobolev spaces and functions 
of bounded variation. Graduate Texts in Mathematics, 120, Springer-Verlag, New 
York, 1989. 



This page intentionally left blank



Index 

admissible sequence, 293 
Aleksandrov reflection method, 520 
almost translation, 496 
ancient /^-solution, 328 
ancient limit, 293 
ancient solution, 102, 153 

3-dimensional has nonnegative sectional 
curvature, 244 

geometry at infinity, 307 
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Bernstein-Bando-Shi estimates, 215 
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second, 10 

Bianchi operator, 124 
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Bryant soliton, 169 
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Calabi's trick, 395 
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Cartan-Hadamard theorem, 1 
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bounds on , 308 
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evolution of, 108, 426 
variation formula, 108 
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lower bound for, 295 
curvature gap estimate 
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of finite time singularity, 294 
of immortal solution, 295 

curvature operator, 121 
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Dirichlet boundary condition, 464, 470 
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change in, 308 
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Laplacian of, 73 
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distributions 

sense of, 68 
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divergence theorem, 21 
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regular, 182 
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Einstein convention, 2 
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Euclidean space 

characterization of, 69 
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existence 
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first fundamental form, 39, 90 
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gradient flow 
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Gromoll-Meyer Theorem, 84 
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Hamilton's 3-manifold theorem, 128 
Hamilton's entropy 

gradient of, 400 
Hamilton, R., 96 
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harmonic map heat flow, 117, 118, 494 
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heat equation 
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heat kernel, 463, 478 
heat operator, 476 
higher derivative of curvature estimates, 
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Hodge decomposition theorem, 24 
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Hodge star operator, 16 
holonomy decomposition 

irreducible, 9 
holonomy group 

restricted, 9 
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locally, 164 
Hopf boundary point lemma, 471 
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isoperimetric estimate 

for 3d Type I singularities, 208 
isoperimetric ratio, 188 

Jacobi equation, 47 
Jacobi field, 47 
Jacobian of the exponential map, 61 
Jensen's inequality, 462 

Kahler-Ricci flow, 504 
Kahler-Ricci soliton, 167 
K-collapsed, 194 
/c-noncollapsed, 193 

on all scales, 193 
/^-solution, 328, 351 
^-solutions 

compactness of space of, 389 
Kazdan-Warner identity, 332 
Killing vector field, 13 

conformal, 516 
Klingenberg's injectivity radius estimate, 

334, 366, 511 

L2-inner product, 16, 467 
Z/2-metric, 400 
L2 Sobolev inequality, 462 
Lambert-W function, 166 
Laplace-Beltrami operator, 17 
Laplacian, 17 

Hodge, 17 
Lichnerowicz, 109 
of rotationally symmetric metric, 66 
rough, 18 

Laplacian comparison theorem, 67 
Laplacian of the distance function, 73 
largest curvature scale, 293 
length 

of a path, 41 
length of a geodesic 
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evolution of, 186 
Levi-Civita connection, 3 
Li-Yau estimate, 392 
Lichnerowicz Laplacian, 109 
Lie algebra, 121 
Lie algebra square, 121 
Lie bracket, 3 
Lie derivative, 11 
Lie group 

unimodular, 169 
line 

geodesic, 81 
linear connection, 89 
linear trace estimate, 401 
linear trace Harnack 

and variation of space-time metric, 454 
linear trace Harnack estimate, 415 
Liouville-type theorem, 394 
Lipschitz function, 56 
local derivative of curvature estimates, 216 
local e-minimizer, 527 
local injectivity radius estimate, 199 
local isometry, 13 
locally conformally flat, 28, 520 
locally homogeneous, 164 
locally Lipschitz function, 56 
logarithmic Sobolev inequality, 184, 463 
long existing solutions, 153 
long time existence, 214 
Lp-norm, 462 

manifold 
Riemannian, 2 

matrix Harnack estimate, 399, 405 
maximum principle 

for systems, 131 
for tensors, 128 
weak, 100 

mean curvature, 39, 62 
mean value inequality, 72 
Mellin transform, 480 
metric 

degenerate, 427 
exponential convergence, 504 
Riemannian, 2 

metric on the cotangent bundle, 6 
Milnor frame, 170 
minimal geodesic, 41 
modified Ricci flow, 165, 512 
moving frames, 32, 160 
//-invariant, 192 
/x-monotonicity, 192 
Myers' theorem, 1 

Neumann boundary condition, 464, 470 
no cigar, 205 
no local collapsing, 194 

no local collapsing theorem, 513 
noncompact ancient solutions on surfaces 

are eternal, 329 
nonnegative bisectional curvature, 410 
nonnegative curvature operator, 248 
norm 

of commutator, 495 
of orthogonal matrix, 495 

normal coordinates, 108 
normalized Ricci flow, 128, 504 
normalized Yamabe flow, 520 
notation, xxxv 
null eigenvector assumption, 129 

one loop term, 460 
open problem, 118, 175, 265, 294, 296, 305, 

331, 337, 351, 367, 373, 374, 401, 519 
orthogonal group 

distance function on, 495 
orthogonal matrix 

norm of, 495 
orthonormal frame, 32 
orthonormal frame bundle, 410 

parallel 
vector field along a path, 4 

parallel curves, 189 
parallel translation, 4 
Perelman, G., xv 
Perelman solution, 389 
Perelman's coupled Ricci flow, 191 
Perelman's entropy, 190 

Pig, 
yellow, 89 

Poincare conjecture, 96 
Poincare duality, 25 
Poincare inequality 

Andrews', 517 
point picking, 297, 303 
Poisson equation, 28 
polar coordinate system, 60 
porous medium equation, 505 
positive curvature operator 

conjecture, 264 
potential function, 154, 507 
potentially gradient soliton, 446 
potentially infinite 

dimensions, 434 
space-time metric, 434 

potentially Ricci flat 
space-time metric, 445 

preconverges, 234, 298 
preservation 

of nonnegative curvature operator, 133 
of nonnegative Ricci curvature, 133 
of nonnegative scalar curvature, 101 
of Ricci pinching, 134 
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preservation 
of lower bound of scalar curvature, 132 
of nonnegative Ricci curvature, 130 

product log function, 166 

rapidly forming singularity, 294 
Rauch comparison theorem, 78 
ray, 56 

geodesic, 81 
Rayleigh principle, 469 
reaction-diffusion equation, 119 
reduced volume, 459 
regular domain, 182 
relative energy, 485, 509 
renormalizing the space-time length, 452 
Riccatti equation, 63 
Ricci calculus, 8 
Ricci curvature, 6 
Ricci flow 

equation, 98 
for degenerate metrics, 427 
game of , 104 
modified, 165, 512 
normalized, 128 

Ricci flow with cosmological term, 432 
Ricci flow with surgeries, 97 
Ricci identities, 14 
Ricci pinching 

improves, 135 
is preserved, 134 

Ricci soliton 
expanding, 164, 356 
gradient, 154, 507 

Ricci soliton identities, 156 
and shrinking solitons, 377 
motivating matrix Harnack, 406 
space-time, 430 

Ricci tensor, 6 
evolution equation, 130 
nonnegativity is preserved, 130 
variation formula, 109 

Ricci-DeTurck flow, 113 
Riemann curvature operator, 121 
Riemann curvature tensor, 4 

components, 109 
evolution equation, 119 

Riemann zeta function, 479 
Riemannian covariant derivative, 3 
Riemannian manifold, 2 
Riemannian measure, 57 
Riemannian metric, 2 
rigid motion, 494 
Rosenau solution, 162 
rotational part, 495 
rotationally symmetric metric, 65 
rough Laplacian, 18 

scalar curvature, 6 
evolution equation, 99 
evolution under normalized flow, 506 
exponential convergence to a constant, 

507 
variation formula, 99 

Schouten tensor, 28 
second Bianchi identity, 10 

contracted, 10 
second fundamental form, 39, 62 
second variation of arc length formula, 42 
sectional curvature, 5 

constant, 6 
self-similar, 392 
sense of distributions, 68 
Sesum's theorem, 218 
Sharafutdinov retraction, 84 
short time existence, 98 
shrinking solitons 

3-dimensional, 375 
Simon's asymptotic theorem, 527 
Simons' identity, 560 
singular solution, 214 
singular time, 97 
singularity, 97 

rapidly forming, 294 
slowly forming, 294 
Type I, 294 
Type Ha, 294 
Type l ib , 294 
Type III, 294 

singularity formation, 291 
singularity model, 293 
slowly forming singularity, 294 
smallest space scale, 293 
Sobolev constant, 182 
Sobolev space, 468 
soliton 

cigar, 159 
space form, 64 
space of metrics, 400 
space-scale, 192 
space-time, 427 

DeTurck's trick, 453 
is potentially gradient soliton, 446 
potential infinite dimensions, 434 
potential infinite metric, 434 
Ricci soliton equation, 430 
Ricci soliton identities, 430 

space-time connection, 428 
space-time curvature, 426 

is the matrix Harnack, 433 
space-time geometry, 425 
space-time Laplacian 

limiting to heat operator, 437 
space-time length 

renormalization of, 452 
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space-time metric 
is potentially Ricci flat, 445 
pulling back by diffeomorphisms, 448 
variation is linear trace Harnack, 454 

space-time track, 457 
spatial infinity 

geometry at, 316 
sphere 

distance, 65 
sphere theorem, 81 
spherical space form, 96 
stable geodesic, 43 
stereographic projection, 524 
Stokes's theorem, 20 
strictly parabolic, 113 
strong maximum principle, 245, 471 

for systems, 247 
structure equations 

Cartan, 33, 160 
summation convention 

Einstein, 2 
support functions 

in the sense of, 45 
surface entropy, 331 
surfaces 

convergence theorem, 504 
symbol 

of a differential operator, 124 

tensors 
as functions on the orthonormal frame 

bundle, 410 
The Matrix, 1, 95 
three-manifolds with positive Ricci 

curvature, 96, 128 
Thurston, W., 96 
Toponogov comparison theorem, 85 
Toponogov splitting theorem, 83 
torus 

Ricci flow on 2-dimensional, 508 
total scalar curvature functional, 104 
totally umbillic, 65 
trace Harnack estimate, 397 
trace of the heat operator, 477 
translational part, 495 
Type I ancient solution 

geometry at infinity, 338 
Type I singularity, 294, 297 
Type Ha singularity, 294, 299, 305 
Type l ib singularity, 294, 301 
Type III singularity, 294, 302 

Uhlenbeck's trick, 121, 410 
uniform closed subgroup, 494 
uniform equivalence of the metrics 

sufficient condition, 217 
uniformly elliptic, 523 

Index 

uniformly parabolic, 523 
unimodular Lie group, 169 

variation formula 
Christoffel symbols, 108 
Einstein-Hilbert functional, 105 
Ricci tensor, 109 
scalar curvature, 99 

vector field 
Killing, 13 

vertex, 86 
volume form, 14, 59 

evolution equation, 127 
local coordinate formula, 104 

warped product metric, 168 
weak maximum principle, 100 

for tensors, 128 
weakly parabolic, 113 
Weingarten map, 40 
Weyl asymptotic formula, 468 
Weyl's estimate, 91 
Weyl-Schouten tensor, 28 
Witten's black hole, 160 

Yamabe flow, 520 
Yamabe invariant, 522 
Yamabe soliton, 517 
Yau's gradient estimate, 394 

zero loop term, 460 
zeta function, 479, 481 
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