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Introduction 

My task which I am trying to achieve is by the power of the 
written word, to make you hear, to make you feel - it is, before 
all, to make you see. That - and no more, and it is everything. 

Joseph Conrad 

Almost two decades ago, a young mathematician by the name of Si
mon Donaldson took the mathematical world by surprise when he discov
ered some "pathological" phenomena concerning smooth 4-manifolds. These 
pathologies were caused by certain behaviours of instantons, solutions of the 
Yang-Mills equations arising in the physical theory of gauge fields. 

Shortly after, he convinced all the skeptics that these phenomena rep
resented only the tip of the iceberg. He showed that the moduli spaces 
of instantons often carry nontrivial and surprising information about the 
background manifold. Very rapidly, many myths were shattered. 

A flurry of work soon followed, devoted to extracting more and more 
information out of these moduli spaces. This is a highly nontrivial job, 
requiring ideas from many branches of mathematics. Gauge theory was 
born and it is here to stay. 

In the fall of 1994, the physicists N. Seiberg and E. Witten introduced 
to the world a new set of equations which according to physical theories had 
to contain the same topological information as the Yang-Mills equations. 

From an analytical point of view these new equations, now known as 
the Seiberg-Witten equations, are easier to deal with than the Yang-Mills 
equations. In a matter of months many of the results obtained by studying 
instantons were re-proved much faster using the new theory. (To be perfectly 
honest, the old theory made these new proofs possible since it created the 
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XIV Introduction 

right mindset to think about the new equations.) The new theory goes 
one step further, since it captures in a more visible fashion the interaction 
geometry-topology. 

The goal of these notes is to help the potential reader share some of 
the excitement afforded by this new world of gauge theory and eventually 
become a player him/herself. 

There are many difficulties to overcome. To set up the theory one needs 
a substantial volume of information. More importantly, all this volume of 
information is processed in a nontraditional way which may make the first 
steps in this new world a bit hesitant. Moreover, the large and fast-growing 
literature on gauge theory, relying on a nonnegligible amount of "folklore"l, 
may look discouraging to a beginner. 

To address these issues within a reasonable space we chose to present a 
few, indispensable, key techniques and as many relevant examples as pos
sible. That is why these notes are far from exhaustive and many notable 
contributions were left out. We believe we have provided enough back
ground and intuition for the interested reader to be able to continue the 
Seiberg-Witten journey on his/her own. 

It is always difficult to resolve the conflict clarity vs. rigor and even 
much more so when presenting an eclectic subject such as gauge theory. The 
compromises one has to make are always biased and thus may not satisfy 
all tastes and backgrounds. We could not escape this bias, but whenever a 
proof would have sent us far astray we tried to present all the main concepts 
and ideas in as clear a light as possible and make up for the missing details 
by providing generous references. Many technical results were left to the 
reader as exercises but we made sure that all the main ingredients can be 
found in these notes. 

Here is a description of the content. The first chapter contains prelim
inary material. It is clearly incomplete and cannot serve as a substitute 
for a more thorough background study. We have included it to present in 
the nontraditional light of gauge theory many classical objects which may 
already be familiar to the reader. 

The study of the Seiberg-Witten equations begins in earnest in Chapter 
2. In the first section we introduce the main characters: the monopoles, 
i.e. the solutions of the Seiberg-Witten equations and the group of gauge 
transformations, an infinite dimensional Abelian group acting on the set of 
monopoles. The Seiberg-Witten moduli space and its structure are described 
in Section 2.2 while the Seiberg-Witten invariants are presented in Section 
2.3. We have painstakingly included all the details concerning orientations 

l rThat is, basic facts and examples every expert knows and thus are only briefly or not at all 
explained in a formal setting. They are usually transmitted through personal interactions. 
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because this is one of the most confusing aspects of the theory. We conclude 
this chapter with two topological applications: the proof by P. Kronheimer 
and T. Mrowka of the Thorn conjecture for CP2 and the new proof based 
on monopoles of Donaldson's first theorem, which started this new field of 
gauge theory. 

In Chapter 3 we concentrate on a special, yet very rich, class of smooth 
4-manifolds, namely the algebraic surfaces. It was observed from the very be
ginning by E. Witten that the monopoles on algebraic surfaces can be given 
an explicit algebraic-geometric description, thus opening the possibility of 
carrying out many concrete computations. The first section of this chapter 
is a brief and informal survey of the geometry and topology of complex sur
faces together with a large list of examples. In Section 3.2 we study in great 
detail the Seiberg-Witten equations on Kahler surfaces and, in particular, 
we prove Witten's result stating the equivalence between the Seiberg-Witten 
moduli spaces and certain moduli spaces of divisors. The third section is 
devoted entirely to applications. We first prove the nontriviality of the 
Seiberg-Witten invariants of a Kahler surface and establish the invariance 
under diffeomorphisms of the canonical class of an algebraic surface of gen
eral type. We next concentrate on simply connected elliptic surfaces. We 
compute all their Seiberg-Witten invariants following an idea of O. Biquard 
based on the factorization method of E. Witten. This computation allows 
us to provide the complete smooth classification of simply connected elliptic 
surfaces. In §3.3.3, we use the computation of the Seiberg-Witten invariants 
of if 3-surfaces to show that the smooth /i-cobordism theorem fails in four di
mensions. We conclude this section and the chapter with a discussion of the 
Seiberg-Witten invariants of symplectic 4-manifolds and we prove Taubes' 
theorem on the nontriviality of these invariants in the symplectic world. 

The fourth and last chapter is by far the most technically demanding 
one. We present in great detail the cut-and-paste technique for comput
ing Seiberg-Witten invariants. This is a very useful yet difficult technique 
but the existing written accounts of this method can be unbalanced as re
gards their details. In this chapter we propose a new approach to this 
technique which in our view has several conceptual advantages and can be 
easily adapted to other problems as well. Since the volume of technicalities 
can often obscure the main ideas we chose to work in a special yet suffi
ciently general case when the moduli spaces of monopoles on the separating 
3-manifold are, roughly speaking, Bott nondegenerate. 

Section 4.1 contains preliminary material mostly about elliptic equa
tions on manifolds with cylindrical ends. Most objects on closed manifolds 
have cylindrical counterparts which often encode very subtle features. We 
discovered that a consistent use of cylindrical notions is not only aesthet
ically desirable, but also technically very useful. The cylindrical context 
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highlights and coherently organizes many important and not so obvious as
pects of the whole gluing problem. An important result in this section is 
the Cappell-Lee-Miller gluing theorem. We adapt the asymptotic language 
of [110], which is extremely convenient in gluing problems. This section 
ends with the long subsection §4.1.6 containing many useful and revealing 
examples. These are frequently used in gauge theory and we could not find 
any satisfactory reference for them. 

In Section 4.2 we study the finite energy monopoles on cylindrical man
ifolds. The results are very similar to the ones in Yang-Mills equations and 
that is why this section was greatly inspired by [96, 133]. 

Section 4.3 is devoted to the local study of the moduli spaces of finite 
energy monopoles. The local structure is formally very similar to that in 
Yang-Mills theory with a notable exception, the computation of the virtual 
dimensions, which is part of the folklore. We present in detail this com
putation since it is often relevant. Moreover, we describe some new exact 
sequences relating the various intervening deformation complexes to objects 
covered by the Cappell-Lee-Miller gluing theorem. These exact sequences 
represent a departure from the mainstream point of view and play a key role 
in our local gluing theorem. 

Section 4.4 is devoted to the study of global properties of the moduli 
spaces of finite energy monopoles: generic smoothness, compactness (or lack 
thereof) and orient ability. The orientability is no longer an elementary issue 
in the noncompact case and we chose to present a proof of this fact only in 
some simpler situations we need for applications. 

Section 4.5 contains the main results of this chapter dealing with the pro
cess of reconstructing the space of monopoles on a 4-manifold decomposed 
into several parts by a hypersurface. This manifold decomposition can be 
analytically simulated by a neck stretching process. During this process, 
the Seiberg-Witten equations are deformed and their solutions converge to 
a singular limit. The key issue to be resolved is whether this process can 
be reversed: given a singular limit can we produce monopoles converging to 
this singular limit? 

In his dissertation [99], T. Mrowka proved a very general gluing theo
rem which provides a satisfactory answer to the above question in the related 
context of Yang-Mills equations. In §4.5.2, we prove a local gluing theorem, 
very similar in spirit to Mrowka's theorem but in an entirely new context. 
The main advantage of the new approach is that all the spectral estimates 
needed in the proof follow immediately from the Cappell-Lee-Miller gluing 
theorem. Moreover, the Mayer-Vietoris type local model is just a reformu
lation of the Cappell-Lee-Miller theorem. The asymptotic language of [110] 
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has allowed us to provide intuitive, natural and explicit descriptions of the 
various morphisms entering into the definition of this Mayer-Vietoris model. 

The local gluing theorem we prove produces monopoles converging to a 
singular limit at a certain rate. If all monopoles degenerated to the singular 
limit set at this rate then we could conclude that the entire moduli space on 
a manifold with a sufficiently long neck can be reconstructed from the local 
gluing constructions. This issue of the surjectivity of the gluing construction 
is conspicuously missing in the literature and it is quite nontrivial in non-
generic situations. We deal with it in §4.5.3 by relying on Lojasewicz's 
inequality in real algebraic geometry. 

In §4.5.4 we prove two global gluing theorems, one in a generic situation 
and the other one in a special, obstructed setting. 

Section 4.6 contains some simple topological applications of the gluing 
technique. We prove the connected sum theorem and the blow-up formula. 
Moreover, we present a new and very short proof of a vanishing theorem of 
Fintushel and Stern. 

These notes were written with a graduate student in mind but there are 
many new points of view to make it interesting for experts as well (especially 
our new approach to the gluing theorem). The minimal background needed 
to go through these notes is a knowledge of basic differential geometry, 
algebraic topology and some familiarity with fundamental facts concerning 
elliptic partial differential equations. The list of contents for Chapter 1 can 
serve as background studying guide. 

* * * 

Personal note. I have spent an exciting time of my life thinking and 
writing these notes and I have been supported along the way by many people. 

The book grew out of a year long seminar at McMaster University and a 
year long graduate course I taught at the University of Notre Dame. I want 
to thank the participants at the seminar and the course for their patience, 
interest, and most of all, for their many useful questions and comments. 

These notes would perhaps not have seen the light of day were it not for 
Frank Connolly's enthusiasm and curiosity about the subject of gauge theory 
which have positively affected me, personally and professionally. I want to 
thank him for the countless hours of discussions, questions and comments 
which helped me crystallize many of the ideas in the book. 

For the past five years, I have been inspired by Arthur Greenspoon's 
passion for culture in general, and mathematics in particular. His interest 
in these notes kept my enthusiasm high. I am greatly indebted to him 



XV111 Introduction 

for reading these notes, suggesting improvements and correcting my often 
liberal use of English language and punctuation. 

While working on these notes I benefited from the conversations with 
Andrew Sommese, Stefan Stolz and Larry Taylor, who patiently answered 
my sometimes clumsily formulated questions and helped clear the fog. 

My wife has graciously accepted my long periods of quiet meditation or 
constant babbling about gauge theory. She has been a constant source of 
support in this endeavor. I want to thank my entire family for being there 
for me. 

Notre Dame, Indiana 1999 



Epilogue 

A whole is that which has a beginning, a middle and an end. 

Aristotle, Poetics 

We can now take a step back and enjoy the view. Think of the places 
we've been and of the surprises we've uncovered! I hope this long and 
winding road we took has strengthened the idea that Mathematics is One 
Huge Question, albeit that it appears in different shapes, colours and flavors 
in the minds of the eccentric group of people we call mathematicians. 

I think the sights you've seen are so breathtaking that even the clumsiest 
guide cannot ruin the pleasure of the mathematical tourist. I also have some 
good news for the thrill seeker. There is a lot more out there and, hereafter, 
you are on your own. Still, I cannot help but mention some of the trails 
that have been opened and are now advancing into the Unknown. (This is 
obviously a biased selection.) 

We've learned that counting the monopoles on a 4-manifold can often be 
an extremely rewarding endeavour. The example of Kahler surfaces suggests 
that individual monopoles are carriers of interesting geometric information. 
As explained in [70], even the knowledge that monopoles exist can lead to 
nontrivial conclusions. What is then the true nature of a monopole? The 
experience with the Seiberg-Witten invariants strongly suggests that the 
answers to this vaguely stated question will have a strong geometric flavour. 

In dimension four, the remarkable efforts of C.H. Taubes [136, 137, 138, 
139], have produced incredibly detailed answers and raised more refined 
questions. 

One subject we have not mentioned in this book but which naturally 
arises when dealing with more sophisticated gluing problems is that of the 
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gauge theory of 3-manifolds. There is a large body of work on this sub
ject (see [25, 43, 44, 70, 77, 78, 83, 88, 89, 91, 109, 111] and the 
references therein) which has led to unexpected conclusions. The nature of 
3-monopoles is a very intriguing subject and there have been some advances 
[70, 72, 100, 108], suggesting that these monopoles reflect many shades 
of the underlying geometry. These studies also seem to indicate that three-
dimensional contact topology ought to have an important role in elucidating 
the nature of monopoles. 

One important event unfolding as we are writing these lines is the in
credible tour de force of Paul Feehan and Thomas Leness, who in a long 
sequence of very difficult papers ([33]) are establishing the original predic
tion of Seiberg and Witten that the "old" Yang-Mills theory is topologically 
equivalent to the new Seiberg-Witten theory. While on this subject we 
have to mention the equally impressive work in progress of Andrei Teleman 
[140] directed towards the same goal but adopting a different tactic. Both 
these efforts are loosely based on an idea of Pidstrigach and Tyurin. A new 
promising approach to this conjecture has been recently proposed by Adrian 
Vajiac [142], based on an entirely different principle. 

Gauge theory has told us that the low-dimensional world can be quite 
exotic and unruly. At this point there is no one generally accepted suggestion 
about how one could classify the smooth 4-manifolds but there is a growing 
body of counterexamples to most common sense guesses. Certain trends 
have developed and there is a growing acceptance of the fact that geometry 
ought to play a role in any classification scheme. In any case, the world is 
ready for the next Big Idea. 
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vector bundle, see also bundle 
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