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PREFACE TO THE SECOND EDITION 

The main objective of this new edition remains the same as that of the first 
edition: to give an exposition of the introductory material and the main theorems 
about class fields of algebraic number fields while placing the minimum prerequisite 
demands on the reader. Although the basic outline remains the same, some new 
material has been added, many proofs have been expanded, and corrections have 
been made where errors in the first edition were found. Some of the additions 
to this edition are new treatments of some examples, emphasizing the use of the 
regular representation to do some calculations, a theorem determining the ring of 
integers in a number field with a finite amount of computation. The section on the 
topology of complete fields has been enlarged to correct a common error found in 
several texts regarding the existence of completions. A new section has been added 
giving the class number formula for quadratic fields. Some new exercises have been 
added. This edition was rekeyed (since no electronic version of the first edition 
exists) so that every line was rewritten. 

The author expresses his thanks to the students and faculty at the University 
of Illinois, as well as many others, who have used this text and made comments 
regarding its improvement. Special thanks to Steve Ullom, Kurt Foster, Gennadii 
V. Matveev, and the late Irving Reiner, who sent comments and corrections to the 
first edition. 

-GJJ 
August 1995 

Preface to the First Edition 

This book contains an exposition of the main theorems of the class field theory of 
algebraic number fields along with the necessary introductory material. An attempt 
is made to keep the exposition self-contained. The only material presupposed is 
that which would be used in elementary Galois theory. The structure theorem for 
finitely generated modules over a principal ideal domain is used, but a proof is 
included in the appendix. 

We use the direct approach to the subject by congruence subgroups of the ideal 
group rather than the more subtle description involving the cohomology of groups. 
This may be considered the historical approach to the subject, but we have pre
sented it because it seems most useful for mathematicians who are specialists in 
other areas but wish to use it. Prom the student's point of view, this approach 
seems to require less background preparation and so is desirable for them. 
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x PREFACES 

The student who is not particularly interested in the theory of class fields can 
profitably read the first three chapters for an introduction to the study of arithmetic 
in fields, Dedekind domains, valuations, and general background material necessary 
for further work in several directions. 

The first chapter contains an introduction to the algebra of number theory. 
The basic properties of Dedekind domains are presented using rather general ring 
theoretic arguments as much as possible. Emphasis is placed on local methods and 
proofs by localization. The results are given for rather general fields except in the 
last three sections. There we discuss cyclotomic extensions of the rational field and 
prove the unit theorem and the finiteness of the class number for algebraic number 
fields. 

Valuations and complete fields are discussed in the second chapter. This depends 
partly on the previous chapter. 

Chapter three contains material connecting Galois groups and ramification. The 
last section gives properties of the Artin map, which are of fundamental importance 
for the rest of the book. 

In Chapter four the material becomes more specialized. We work exclusively 
with algebraic number fields and their completions. The analytic theorems proved 
include the Frobenius density theorem and Dirichlet's theorem on primes in arith
metic progression. 

Chapter five contains the main results on class fields. A small amount of coho-
mology is developed here. We use only H° and Hl and then only for cyclic groups. 
In this case a concrete description of the cohomology groups is used so the reader 
is not carried far from the fields and Galois groups. The approach to the main 
theorems makes systematic use of the Artin map and the Artin reciprocity theo
rem. We close the chapter with a discussion of the Hilbert class field and Artin's 
reduction of the principal ideal theorem. 

The last chapter is intended primarily for illustration of the concepts introduced 
in the earlier chapters. We study mainly quadratic fields and prove a result which 
goes back to Gauss giving information about the class group of a quadratic number 
field. A few calculations are made to illustrate the use of the norm residue symbols. 

The material in this text was used in a year-long course at the University of 
Illinois in 1970-1971. The first three chapters were covered in the first semester and 
the balance in the second semester. 
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